rt-thread/bsp/lpc54114-lite/Libraries/devices/LPC54114/drivers/fsl_spi_dma.c

527 lines
19 KiB
C

/*
* The Clear BSD License
* Copyright (c) 2016, Freescale Semiconductor, Inc.
* Copyright 2016-2017 NXP
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted (subject to the limitations in the disclaimer below) provided
* that the following conditions are met:
*
* o Redistributions of source code must retain the above copyright notice, this list
* of conditions and the following disclaimer.
*
* o Redistributions in binary form must reproduce the above copyright notice, this
* list of conditions and the following disclaimer in the documentation and/or
* other materials provided with the distribution.
*
* o Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "fsl_spi_dma.h"
/*******************************************************************************
* Definitions
******************************************************************************/
/* Component ID definition, used by tools. */
#ifndef FSL_COMPONENT_ID
#define FSL_COMPONENT_ID "platform.drivers.flexcomm_spi_dma"
#endif
/*<! Structure definition for spi_dma_private_handle_t. The structure is private. */
typedef struct _spi_dma_private_handle
{
SPI_Type *base;
spi_dma_handle_t *handle;
} spi_dma_private_handle_t;
/*! @brief SPI transfer state, which is used for SPI transactiaonl APIs' internal state. */
enum _spi_dma_states_t
{
kSPI_Idle = 0x0, /*!< SPI is idle state */
kSPI_Busy /*!< SPI is busy tranferring data. */
};
typedef struct _spi_dma_txdummy
{
uint32_t lastWord;
uint32_t word;
} spi_dma_txdummy_t;
/*<! Private handle only used for internally. */
static spi_dma_private_handle_t s_dmaPrivateHandle[FSL_FEATURE_SOC_SPI_COUNT];
/*******************************************************************************
* Prototypes
******************************************************************************/
/*!
* @brief DMA callback function for SPI send transfer.
*
* @param handle DMA handle pointer.
* @param userData User data for DMA callback function.
*/
static void SPI_TxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode);
/*!
* @brief DMA callback function for SPI receive transfer.
*
* @param handle DMA handle pointer.
* @param userData User data for DMA callback function.
*/
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode);
/*******************************************************************************
* Variables
******************************************************************************/
#if defined(__ICCARM__)
#pragma data_alignment = 4
static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#elif defined(__CC_ARM)
__attribute__((aligned(4))) static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#elif defined(__GNUC__)
__attribute__((aligned(4))) static spi_dma_txdummy_t s_txDummy[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#endif
#if defined(__ICCARM__)
#pragma data_alignment = 4
static uint16_t s_rxDummy;
static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
#elif defined(__CC_ARM)
__attribute__((aligned(4))) static uint16_t s_rxDummy;
__attribute__((aligned(4))) static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
#elif defined(__GNUC__)
__attribute__((aligned(4))) static uint16_t s_rxDummy;
__attribute__((aligned(4))) static uint32_t s_txLastWord[FSL_FEATURE_SOC_SPI_COUNT];
#endif
#if defined(__ICCARM__)
#pragma data_alignment = 16
static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#elif defined(__CC_ARM)
__attribute__((aligned(16))) static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#elif defined(__GNUC__)
__attribute__((aligned(16))) static dma_descriptor_t s_spi_descriptor_table[FSL_FEATURE_SOC_SPI_COUNT] = {0};
#endif
/*******************************************************************************
* Code
******************************************************************************/
static void XferToFifoWR(spi_transfer_t *xfer, uint32_t *fifowr)
{
*fifowr |= xfer->configFlags & (uint32_t)kSPI_FrameDelay ? (uint32_t)kSPI_FrameDelay : 0;
*fifowr |= xfer->configFlags & (uint32_t)kSPI_FrameAssert ? (uint32_t)kSPI_FrameAssert : 0;
}
static void SpiConfigToFifoWR(spi_config_t *config, uint32_t *fifowr)
{
*fifowr |= (SPI_DEASSERT_ALL & (~SPI_DEASSERTNUM_SSEL(config->sselNum)));
/* set width of data - range asserted at entry */
*fifowr |= SPI_FIFOWR_LEN(config->dataWidth);
}
static void PrepareTxLastWord(spi_transfer_t *xfer, uint32_t *txLastWord, spi_config_t *config)
{
if (config->dataWidth > kSPI_Data8Bits)
{
*txLastWord = (((uint32_t)xfer->txData[xfer->dataSize - 1] << 8U) | (xfer->txData[xfer->dataSize - 2]));
}
else
{
*txLastWord = xfer->txData[xfer->dataSize - 1];
}
XferToFifoWR(xfer, txLastWord);
SpiConfigToFifoWR(config, txLastWord);
}
static void SPI_SetupDummy(SPI_Type *base, spi_dma_txdummy_t *dummy, spi_transfer_t *xfer, spi_config_t *spi_config_p)
{
uint32_t instance = SPI_GetInstance(base);
dummy->word = ((uint32_t)s_dummyData[instance] << 8U | s_dummyData[instance]);
dummy->lastWord = ((uint32_t)s_dummyData[instance] << 8U | s_dummyData[instance]);
XferToFifoWR(xfer, &dummy->word);
XferToFifoWR(xfer, &dummy->lastWord);
SpiConfigToFifoWR(spi_config_p, &dummy->word);
SpiConfigToFifoWR(spi_config_p, &dummy->lastWord);
/* Clear the end of transfer bit for continue word transfer. */
dummy->word &= (uint32_t)(~kSPI_FrameAssert);
}
status_t SPI_MasterTransferCreateHandleDMA(SPI_Type *base,
spi_dma_handle_t *handle,
spi_dma_callback_t callback,
void *userData,
dma_handle_t *txHandle,
dma_handle_t *rxHandle)
{
int32_t instance = 0;
/* check 'base' */
assert(!(NULL == base));
if (NULL == base)
{
return kStatus_InvalidArgument;
}
/* check 'handle' */
assert(!(NULL == handle));
if (NULL == handle)
{
return kStatus_InvalidArgument;
}
instance = SPI_GetInstance(base);
memset(handle, 0, sizeof(*handle));
/* Set spi base to handle */
handle->txHandle = txHandle;
handle->rxHandle = rxHandle;
handle->callback = callback;
handle->userData = userData;
/* Set SPI state to idle */
handle->state = kSPI_Idle;
/* Set handle to global state */
s_dmaPrivateHandle[instance].base = base;
s_dmaPrivateHandle[instance].handle = handle;
/* Install callback for Tx dma channel */
DMA_SetCallback(handle->txHandle, SPI_TxDMACallback, &s_dmaPrivateHandle[instance]);
DMA_SetCallback(handle->rxHandle, SPI_RxDMACallback, &s_dmaPrivateHandle[instance]);
return kStatus_Success;
}
status_t SPI_MasterTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_transfer_t *xfer)
{
int32_t instance;
status_t result = kStatus_Success;
spi_config_t *spi_config_p;
assert(!((NULL == handle) || (NULL == xfer)));
if ((NULL == handle) || (NULL == xfer))
{
return kStatus_InvalidArgument;
}
/* Byte size is zero. */
assert(!(xfer->dataSize == 0));
if (xfer->dataSize == 0)
{
return kStatus_InvalidArgument;
}
/* cannot get instance from base address */
instance = SPI_GetInstance(base);
assert(!(instance < 0));
if (instance < 0)
{
return kStatus_InvalidArgument;
}
/* Check if the device is busy */
if (handle->state == kSPI_Busy)
{
return kStatus_SPI_Busy;
}
else
{
uint32_t tmp;
dma_transfer_config_t xferConfig = {0};
spi_config_p = (spi_config_t *)SPI_GetConfig(base);
handle->state = kStatus_SPI_Busy;
handle->transferSize = xfer->dataSize;
/* receive */
SPI_EnableRxDMA(base, true);
if (xfer->rxData)
{
DMA_PrepareTransfer(&xferConfig, ((void *)((uint32_t)&base->FIFORD)), xfer->rxData,
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
xfer->dataSize, kDMA_PeripheralToMemory, NULL);
}
else
{
DMA_PrepareTransfer(&xferConfig, ((void *)((uint32_t)&base->FIFORD)), &s_rxDummy,
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
xfer->dataSize, kDMA_StaticToStatic, NULL);
}
DMA_SubmitTransfer(handle->rxHandle, &xferConfig);
handle->rxInProgress = true;
DMA_StartTransfer(handle->rxHandle);
/* transmit */
SPI_EnableTxDMA(base, true);
if (xfer->configFlags & kSPI_FrameAssert)
{
PrepareTxLastWord(xfer, &s_txLastWord[instance], spi_config_p);
}
if (xfer->txData)
{
/* If end of tranfer function is enabled and data transfer frame is bigger then 1, use dma
* descriptor to send the last data.
*/
if ((xfer->configFlags & kSPI_FrameAssert) &&
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize > 2) : (xfer->dataSize > 1)))
{
dma_xfercfg_t tmp_xfercfg = {0};
tmp_xfercfg.valid = true;
tmp_xfercfg.swtrig = true;
tmp_xfercfg.intA = true;
tmp_xfercfg.byteWidth = sizeof(uint32_t);
tmp_xfercfg.srcInc = 0;
tmp_xfercfg.dstInc = 0;
tmp_xfercfg.transferCount = 1;
/* Create chained descriptor to transmit last word */
DMA_CreateDescriptor(&s_spi_descriptor_table[instance], &tmp_xfercfg, &s_txLastWord[instance],
((void *)((uint32_t)&base->FIFOWR)), NULL);
DMA_PrepareTransfer(
&xferConfig, xfer->txData, ((void *)((uint32_t)&base->FIFOWR)),
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize - 2) : (xfer->dataSize - 1)),
kDMA_MemoryToPeripheral, &s_spi_descriptor_table[instance]);
/* Disable interrupts for first descriptor to avoid calling callback twice. */
xferConfig.xfercfg.intA = false;
xferConfig.xfercfg.intB = false;
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
if (result != kStatus_Success)
{
return result;
}
}
else
{
DMA_PrepareTransfer(
&xferConfig, xfer->txData, ((void *)((uint32_t)&base->FIFOWR)),
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
xfer->dataSize, kDMA_MemoryToPeripheral, NULL);
DMA_SubmitTransfer(handle->txHandle, &xferConfig);
}
}
else
{
/* Setup tx dummy data. */
SPI_SetupDummy(base, &s_txDummy[instance], xfer, spi_config_p);
if ((xfer->configFlags & kSPI_FrameAssert) &&
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize > 2) : (xfer->dataSize > 1)))
{
dma_xfercfg_t tmp_xfercfg = {0};
tmp_xfercfg.valid = true;
tmp_xfercfg.swtrig = true;
tmp_xfercfg.intA = true;
tmp_xfercfg.byteWidth = sizeof(uint32_t);
tmp_xfercfg.srcInc = 0;
tmp_xfercfg.dstInc = 0;
tmp_xfercfg.transferCount = 1;
/* Create chained descriptor to transmit last word */
DMA_CreateDescriptor(&s_spi_descriptor_table[instance], &tmp_xfercfg, &s_txDummy[instance].lastWord,
(void *)((uint32_t)&base->FIFOWR), NULL);
/* Use common API to setup first descriptor */
DMA_PrepareTransfer(
&xferConfig, &s_txDummy[instance].word, ((void *)((uint32_t)&base->FIFOWR)),
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize - 2) : (xfer->dataSize - 1)),
kDMA_StaticToStatic, &s_spi_descriptor_table[instance]);
/* Disable interrupts for first descriptor to avoid calling callback twice */
xferConfig.xfercfg.intA = false;
xferConfig.xfercfg.intB = false;
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
if (result != kStatus_Success)
{
return result;
}
}
else
{
DMA_PrepareTransfer(
&xferConfig, &s_txDummy[instance].word, ((void *)((uint32_t)&base->FIFOWR)),
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (sizeof(uint16_t)) : (sizeof(uint8_t))),
xfer->dataSize, kDMA_StaticToStatic, NULL);
result = DMA_SubmitTransfer(handle->txHandle, &xferConfig);
if (result != kStatus_Success)
{
return result;
}
}
}
handle->txInProgress = true;
tmp = 0;
XferToFifoWR(xfer, &tmp);
SpiConfigToFifoWR(spi_config_p, &tmp);
/* Setup the control info.
* Halfword writes to just the control bits (offset 0xE22) doesn't push anything into the FIFO.
* And the data access type of control bits must be uint16_t, byte writes or halfword writes to FIFOWR
* will push the data and the current control bits into the FIFO.
*/
if ((xfer->configFlags & kSPI_FrameAssert) &&
((spi_config_p->dataWidth > kSPI_Data8Bits) ? (xfer->dataSize == 2U) : (xfer->dataSize == 1U)))
{
*(((uint16_t *)((uint32_t) & (base->FIFOWR))) + 1) = (uint16_t)(tmp >> 16U);
}
else
{
/* Clear the SPI_FIFOWR_EOT_MASK bit when data is not the last. */
tmp &= (uint32_t)(~kSPI_FrameAssert);
*(((uint16_t *)((uint32_t) & (base->FIFOWR))) + 1) = (uint16_t)(tmp >> 16U);
}
DMA_StartTransfer(handle->txHandle);
}
return result;
}
status_t SPI_MasterHalfDuplexTransferDMA(SPI_Type *base, spi_dma_handle_t *handle, spi_half_duplex_transfer_t *xfer)
{
assert(xfer);
assert(handle);
spi_transfer_t tempXfer = {0};
status_t status;
if (xfer->isTransmitFirst)
{
tempXfer.txData = xfer->txData;
tempXfer.rxData = NULL;
tempXfer.dataSize = xfer->txDataSize;
}
else
{
tempXfer.txData = NULL;
tempXfer.rxData = xfer->rxData;
tempXfer.dataSize = xfer->rxDataSize;
}
/* If the pcs pin keep assert between transmit and receive. */
if (xfer->isPcsAssertInTransfer)
{
tempXfer.configFlags = (xfer->configFlags) & (uint32_t)(~kSPI_FrameAssert);
}
else
{
tempXfer.configFlags = (xfer->configFlags) | kSPI_FrameAssert;
}
status = SPI_MasterTransferBlocking(base, &tempXfer);
if (status != kStatus_Success)
{
return status;
}
if (xfer->isTransmitFirst)
{
tempXfer.txData = NULL;
tempXfer.rxData = xfer->rxData;
tempXfer.dataSize = xfer->rxDataSize;
}
else
{
tempXfer.txData = xfer->txData;
tempXfer.rxData = NULL;
tempXfer.dataSize = xfer->txDataSize;
}
tempXfer.configFlags = xfer->configFlags;
status = SPI_MasterTransferDMA(base, handle, &tempXfer);
return status;
}
static void SPI_RxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode)
{
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
spi_dma_handle_t *spiHandle = privHandle->handle;
SPI_Type *base = privHandle->base;
/* change the state */
spiHandle->rxInProgress = false;
/* All finished, call the callback */
if ((spiHandle->txInProgress == false) && (spiHandle->rxInProgress == false))
{
spiHandle->state = kSPI_Idle;
if (spiHandle->callback)
{
(spiHandle->callback)(base, spiHandle, kStatus_Success, spiHandle->userData);
}
}
}
static void SPI_TxDMACallback(dma_handle_t *handle, void *userData, bool transferDone, uint32_t intmode)
{
spi_dma_private_handle_t *privHandle = (spi_dma_private_handle_t *)userData;
spi_dma_handle_t *spiHandle = privHandle->handle;
SPI_Type *base = privHandle->base;
/* change the state */
spiHandle->txInProgress = false;
/* All finished, call the callback */
if ((spiHandle->txInProgress == false) && (spiHandle->rxInProgress == false))
{
spiHandle->state = kSPI_Idle;
if (spiHandle->callback)
{
(spiHandle->callback)(base, spiHandle, kStatus_Success, spiHandle->userData);
}
}
}
void SPI_MasterTransferAbortDMA(SPI_Type *base, spi_dma_handle_t *handle)
{
assert(NULL != handle);
/* Stop tx transfer first */
DMA_AbortTransfer(handle->txHandle);
/* Then rx transfer */
DMA_AbortTransfer(handle->rxHandle);
/* Set the handle state */
handle->txInProgress = false;
handle->rxInProgress = false;
handle->state = kSPI_Idle;
}
status_t SPI_MasterTransferGetCountDMA(SPI_Type *base, spi_dma_handle_t *handle, size_t *count)
{
assert(handle);
if (!count)
{
return kStatus_InvalidArgument;
}
/* Catch when there is not an active transfer. */
if (handle->state != kSPI_Busy)
{
*count = 0;
return kStatus_NoTransferInProgress;
}
size_t bytes;
bytes = DMA_GetRemainingBytes(handle->rxHandle->base, handle->rxHandle->channel);
*count = handle->transferSize - bytes;
return kStatus_Success;
}