rt-thread/components/fal/src/fal_rtt.c

940 lines
28 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-06-23 armink the first version
* 2019-08-22 MurphyZhao adapt to none rt-thread case
*/
#include <fal.h>
#ifdef RT_VER_NUM
#include <rtthread.h>
#include <rtdevice.h>
#include <string.h>
#include <stdlib.h>
/* ========================== block device ======================== */
struct fal_blk_device
{
struct rt_device parent;
struct rt_device_blk_geometry geometry;
const struct fal_partition *fal_part;
};
/* RT-Thread device interface */
#if RTTHREAD_VERSION >= 30000
static rt_err_t blk_dev_control(rt_device_t dev, int cmd, void *args)
#else
static rt_err_t blk_dev_control(rt_device_t dev, rt_uint8_t cmd, void *args)
#endif
{
struct fal_blk_device *part = (struct fal_blk_device*) dev;
assert(part != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *) args;
if (geometry == RT_NULL)
{
return -RT_ERROR;
}
memcpy(geometry, &part->geometry, sizeof(struct rt_device_blk_geometry));
}
else if (cmd == RT_DEVICE_CTRL_BLK_ERASE)
{
rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
rt_size_t phy_size;
if (addrs == RT_NULL || start_addr > end_addr)
{
return -RT_ERROR;
}
if (end_addr == start_addr)
{
end_addr++;
}
phy_start_addr = start_addr * part->geometry.bytes_per_sector;
phy_size = (end_addr - start_addr) * part->geometry.bytes_per_sector;
if (fal_partition_erase(part->fal_part, phy_start_addr, phy_size) < 0)
{
return -RT_ERROR;
}
}
return RT_EOK;
}
static rt_ssize_t blk_dev_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
int ret = 0;
struct fal_blk_device *part = (struct fal_blk_device*) dev;
assert(part != RT_NULL);
ret = fal_partition_read(part->fal_part, pos * part->geometry.block_size, buffer, size * part->geometry.block_size);
if (ret != (int)(size * part->geometry.block_size))
{
ret = 0;
}
else
{
ret = size;
}
return ret;
}
static rt_ssize_t blk_dev_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
int ret = 0;
struct fal_blk_device *part;
rt_off_t phy_pos;
rt_size_t phy_size;
part = (struct fal_blk_device*) dev;
assert(part != RT_NULL);
/* change the block device's logic address to physical address */
phy_pos = pos * part->geometry.bytes_per_sector;
phy_size = size * part->geometry.bytes_per_sector;
ret = fal_partition_erase(part->fal_part, phy_pos, phy_size);
if (ret == (int) phy_size)
{
ret = fal_partition_write(part->fal_part, phy_pos, buffer, phy_size);
}
if (ret != (int) phy_size)
{
ret = 0;
}
else
{
ret = size;
}
return ret;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops blk_dev_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
blk_dev_read,
blk_dev_write,
blk_dev_control
};
#endif
/**
* create RT-Thread block device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created block device
* NULL: created failed
*/
struct rt_device *fal_blk_device_create(const char *parition_name)
{
struct fal_blk_device *blk_dev;
const struct fal_partition *fal_part = fal_partition_find(parition_name);
const struct fal_flash_dev *fal_flash = NULL;
if (!fal_part)
{
log_e("Error: the partition name (%s) is not found.", parition_name);
return NULL;
}
if ((fal_flash = fal_flash_device_find(fal_part->flash_name)) == NULL)
{
log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name);
return NULL;
}
blk_dev = (struct fal_blk_device*) rt_malloc(sizeof(struct fal_blk_device));
if (blk_dev)
{
blk_dev->fal_part = fal_part;
blk_dev->geometry.bytes_per_sector = fal_flash->blk_size;
blk_dev->geometry.block_size = fal_flash->blk_size;
blk_dev->geometry.sector_count = fal_part->len / fal_flash->blk_size;
/* register device */
blk_dev->parent.type = RT_Device_Class_Block;
#ifdef RT_USING_DEVICE_OPS
blk_dev->parent.ops = &blk_dev_ops;
#else
blk_dev->parent.init = NULL;
blk_dev->parent.open = NULL;
blk_dev->parent.close = NULL;
blk_dev->parent.read = blk_dev_read;
blk_dev->parent.write = blk_dev_write;
blk_dev->parent.control = blk_dev_control;
#endif
/* no private */
blk_dev->parent.user_data = RT_NULL;
log_i("The FAL block device (%s) created successfully", fal_part->name);
rt_device_register(RT_DEVICE(blk_dev), fal_part->name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
}
else
{
log_e("Error: no memory for create FAL block device");
}
return RT_DEVICE(blk_dev);
}
/* ========================== MTD nor device ======================== */
#if defined(RT_USING_MTD_NOR)
struct fal_mtd_nor_device
{
struct rt_mtd_nor_device parent;
const struct fal_partition *fal_part;
};
static rt_ssize_t mtd_nor_dev_read(struct rt_mtd_nor_device* device, rt_off_t offset, rt_uint8_t* data, rt_uint32_t length)
{
int ret = 0;
struct fal_mtd_nor_device *part = (struct fal_mtd_nor_device*) device;
assert(part != RT_NULL);
ret = fal_partition_read(part->fal_part, offset, data, length);
if (ret != (int)length)
{
ret = 0;
}
else
{
ret = length;
}
return ret;
}
static rt_ssize_t mtd_nor_dev_write(struct rt_mtd_nor_device* device, rt_off_t offset, const rt_uint8_t* data, rt_uint32_t length)
{
int ret = 0;
struct fal_mtd_nor_device *part;
part = (struct fal_mtd_nor_device*) device;
assert(part != RT_NULL);
ret = fal_partition_write(part->fal_part, offset, data, length);
if (ret != (int) length)
{
ret = 0;
}
else
{
ret = length;
}
return ret;
}
static rt_err_t mtd_nor_dev_erase(struct rt_mtd_nor_device* device, rt_off_t offset, rt_uint32_t length)
{
int ret = 0;
struct fal_mtd_nor_device *part;
part = (struct fal_mtd_nor_device*) device;
assert(part != RT_NULL);
ret = fal_partition_erase(part->fal_part, offset, length);
if ((rt_uint32_t)ret != length || ret < 0)
{
return -RT_ERROR;
}
else
{
return RT_EOK;
}
}
static const struct rt_mtd_nor_driver_ops _ops =
{
RT_NULL,
mtd_nor_dev_read,
mtd_nor_dev_write,
mtd_nor_dev_erase,
};
/**
* create RT-Thread MTD NOR device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created MTD NOR device
* NULL: created failed
*/
struct rt_device *fal_mtd_nor_device_create(const char *parition_name)
{
struct fal_mtd_nor_device *mtd_nor_dev;
const struct fal_partition *fal_part = fal_partition_find(parition_name);
const struct fal_flash_dev *fal_flash = NULL;
if (!fal_part)
{
log_e("Error: the partition name (%s) is not found.", parition_name);
return NULL;
}
if ((fal_flash = fal_flash_device_find(fal_part->flash_name)) == NULL)
{
log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name);
return NULL;
}
mtd_nor_dev = (struct fal_mtd_nor_device*) rt_malloc(sizeof(struct fal_mtd_nor_device));
if (mtd_nor_dev)
{
mtd_nor_dev->fal_part = fal_part;
mtd_nor_dev->parent.block_start = 0;
mtd_nor_dev->parent.block_end = fal_part->len / fal_flash->blk_size;
mtd_nor_dev->parent.block_size = fal_flash->blk_size;
/* set ops */
mtd_nor_dev->parent.ops = &_ops;
log_i("The FAL MTD NOR device (%s) created successfully", fal_part->name);
rt_mtd_nor_register_device(fal_part->name, &mtd_nor_dev->parent);
}
else
{
log_e("Error: no memory for create FAL MTD NOR device");
}
return RT_DEVICE(&mtd_nor_dev->parent);
}
#endif /* defined(RT_USING_MTD_NOR) */
/* ========================== char device ======================== */
struct fal_char_device
{
struct rt_device parent;
const struct fal_partition *fal_part;
};
/* RT-Thread device interface */
static rt_ssize_t char_dev_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
int ret = 0;
struct fal_char_device *part = (struct fal_char_device *) dev;
assert(part != RT_NULL);
if (pos + size > part->fal_part->len)
size = part->fal_part->len - pos;
ret = fal_partition_read(part->fal_part, pos, buffer, size);
if (ret != (int)(size))
ret = 0;
return ret;
}
static rt_ssize_t char_dev_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
int ret = 0;
struct fal_char_device *part;
part = (struct fal_char_device *) dev;
assert(part != RT_NULL);
if (pos == 0)
{
fal_partition_erase_all(part->fal_part);
}
else if (pos + size > part->fal_part->len)
{
size = part->fal_part->len - pos;
}
ret = fal_partition_write(part->fal_part, pos, buffer, size);
if (ret != (int) size)
ret = 0;
return ret;
}
#ifdef RT_USING_DEVICE_OPS
const static struct rt_device_ops char_dev_ops =
{
RT_NULL,
RT_NULL,
RT_NULL,
char_dev_read,
char_dev_write,
RT_NULL
};
#endif
#ifdef RT_USING_POSIX_DEVIO
#include <dfs_file.h>
#include <unistd.h>
#include <stdio.h> /* rename() */
#include <sys/stat.h>
#include <sys/statfs.h> /* statfs() */
/* RT-Thread device filesystem interface */
static int char_dev_fopen(struct dfs_file *fd)
{
struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data;
assert(part != RT_NULL);
switch (fd->flags & O_ACCMODE)
{
case O_RDONLY:
break;
case O_WRONLY:
case O_RDWR:
/* erase partition when device file open */
fal_partition_erase_all(part->fal_part);
break;
default:
break;
}
DFS_FILE_POS(fd) = 0;
return RT_EOK;
}
static int char_dev_fread(struct dfs_file *fd, void *buf, size_t count)
{
int ret = 0;
struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data;
assert(part != RT_NULL);
if (DFS_FILE_POS(fd) + count > part->fal_part->len)
count = part->fal_part->len - DFS_FILE_POS(fd);
ret = fal_partition_read(part->fal_part, DFS_FILE_POS(fd), buf, count);
if (ret != (int)(count))
return 0;
DFS_FILE_POS(fd) += ret;
return ret;
}
static int char_dev_fwrite(struct dfs_file *fd, const void *buf, size_t count)
{
int ret = 0;
struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data;
assert(part != RT_NULL);
if (DFS_FILE_POS(fd) + count > part->fal_part->len)
count = part->fal_part->len - DFS_FILE_POS(fd);
ret = fal_partition_write(part->fal_part, DFS_FILE_POS(fd), buf, count);
if (ret != (int) count)
return 0;
DFS_FILE_POS(fd) += ret;
return ret;
}
static const struct dfs_file_ops char_dev_fops =
{
char_dev_fopen,
RT_NULL,
RT_NULL,
char_dev_fread,
char_dev_fwrite,
RT_NULL, /* flush */
RT_NULL, /* lseek */
RT_NULL, /* getdents */
RT_NULL,
};
#endif /* defined(RT_USING_POSIX_DEVIO) */
/**
* create RT-Thread char device by specified partition
*
* @param parition_name partition name
*
* @return != NULL: created char device
* NULL: created failed
*/
struct rt_device *fal_char_device_create(const char *parition_name)
{
struct fal_char_device *char_dev;
const struct fal_partition *fal_part = fal_partition_find(parition_name);
if (!fal_part)
{
log_e("Error: the partition name (%s) is not found.", parition_name);
return NULL;
}
if ((fal_flash_device_find(fal_part->flash_name)) == NULL)
{
log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name);
return NULL;
}
char_dev = (struct fal_char_device *) rt_malloc(sizeof(struct fal_char_device));
if (char_dev)
{
char_dev->fal_part = fal_part;
/* register device */
char_dev->parent.type = RT_Device_Class_Char;
#ifdef RT_USING_DEVICE_OPS
char_dev->parent.ops = &char_dev_ops;
#else
char_dev->parent.init = NULL;
char_dev->parent.open = NULL;
char_dev->parent.close = NULL;
char_dev->parent.read = char_dev_read;
char_dev->parent.write = char_dev_write;
char_dev->parent.control = NULL;
/* no private */
char_dev->parent.user_data = NULL;
#endif
rt_device_register(RT_DEVICE(char_dev), fal_part->name, RT_DEVICE_FLAG_RDWR);
log_i("The FAL char device (%s) created successfully", fal_part->name);
#ifdef RT_USING_POSIX_DEVIO
/* set fops */
char_dev->parent.fops = &char_dev_fops;
#endif
}
else
{
log_e("Error: no memory for create FAL char device");
}
return RT_DEVICE(char_dev);
}
#if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
#include <finsh.h>
extern int fal_init_check(void);
static void fal(uint8_t argc, char **argv) {
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
#define HEXDUMP_WIDTH 16
#define CMD_PROBE_INDEX 0
#define CMD_READ_INDEX 1
#define CMD_WRITE_INDEX 2
#define CMD_ERASE_INDEX 3
#define CMD_BENCH_INDEX 4
int result = 0;
static const struct fal_flash_dev *flash_dev = NULL;
static const struct fal_partition *part_dev = NULL;
size_t i = 0, j = 0;
const char* help_info[] =
{
[CMD_PROBE_INDEX] = "fal probe [dev_name|part_name] - probe flash device or partition by given name",
[CMD_READ_INDEX] = "fal read addr size - read 'size' bytes starting at 'addr'",
[CMD_WRITE_INDEX] = "fal write addr data1 ... dataN - write some bytes 'data' starting at 'addr'",
[CMD_ERASE_INDEX] = "fal erase addr size - erase 'size' bytes starting at 'addr'",
[CMD_BENCH_INDEX] = "fal bench <blk_size> - benchmark test with per block size",
};
if (fal_init_check() != 1)
{
rt_kprintf("\n[Warning] FAL is not initialized or failed to initialize!\n\n");
return;
}
if (argc < 2)
{
rt_kprintf("Usage:\n");
for (i = 0; i < sizeof(help_info) / sizeof(char*); i++)
{
rt_kprintf("%s\n", help_info[i]);
}
rt_kprintf("\n");
}
else
{
const char *operator = argv[1];
uint32_t addr, size;
if (!strcmp(operator, "probe"))
{
if (argc >= 3)
{
char *dev_name = argv[2];
if ((flash_dev = fal_flash_device_find(dev_name)) != NULL)
{
part_dev = NULL;
}
else if ((part_dev = fal_partition_find(dev_name)) != NULL)
{
flash_dev = NULL;
}
else
{
rt_kprintf("Device %s NOT found. Probe failed.\n", dev_name);
flash_dev = NULL;
part_dev = NULL;
}
}
if (flash_dev)
{
rt_kprintf("Probed a flash device | %s | addr: %ld | len: %d |.\n", flash_dev->name,
flash_dev->addr, flash_dev->len);
}
else if (part_dev)
{
rt_kprintf("Probed a flash partition | %s | flash_dev: %s | offset: %ld | len: %d |.\n",
part_dev->name, part_dev->flash_name, part_dev->offset, part_dev->len);
}
else
{
rt_kprintf("No flash device or partition was probed.\n");
rt_kprintf("Usage: %s.\n", help_info[CMD_PROBE_INDEX]);
fal_show_part_table();
}
}
else
{
if (!flash_dev && !part_dev)
{
rt_kprintf("No flash device or partition was probed. Please run 'fal probe'.\n");
return;
}
if (!rt_strcmp(operator, "read"))
{
if (argc < 4)
{
rt_kprintf("Usage: %s.\n", help_info[CMD_READ_INDEX]);
return;
}
else
{
addr = strtol(argv[2], NULL, 0);
size = strtol(argv[3], NULL, 0);
uint8_t *data = rt_malloc(size);
if (data)
{
if (flash_dev)
{
result = flash_dev->ops.read(addr, data, size);
}
else if (part_dev)
{
result = fal_partition_read(part_dev, addr, data, size);
}
if (result >= 0)
{
rt_kprintf("Read data success. Start from 0x%08X, size is %ld. The data is:\n", addr,
size);
rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
for (i = 0; i < size; i += HEXDUMP_WIDTH)
{
rt_kprintf("[%08X] ", addr + i);
/* dump hex */
for (j = 0; j < HEXDUMP_WIDTH; j++)
{
if (i + j < size)
{
rt_kprintf("%02X ", data[i + j]);
}
else
{
rt_kprintf(" ");
}
}
/* dump char for hex */
for (j = 0; j < HEXDUMP_WIDTH; j++)
{
if (i + j < size)
{
rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.');
}
}
rt_kprintf("\n");
}
rt_kprintf("\n");
}
rt_free(data);
}
else
{
rt_kprintf("Low memory!\n");
}
}
}
else if (!strcmp(operator, "write"))
{
if (argc < 4)
{
rt_kprintf("Usage: %s.\n", help_info[CMD_WRITE_INDEX]);
return;
}
else
{
addr = strtol(argv[2], NULL, 0);
size = argc - 3;
uint8_t *data = rt_malloc(size);
if (data)
{
for (i = 0; i < size; i++)
{
data[i] = strtol(argv[3 + i], NULL, 0);
}
if (flash_dev)
{
result = flash_dev->ops.write(addr, data, size);
}
else if (part_dev)
{
result = fal_partition_write(part_dev, addr, data, size);
}
if (result >= 0)
{
rt_kprintf("Write data success. Start from 0x%08X, size is %ld.\n", addr, size);
rt_kprintf("Write data: ");
for (i = 0; i < size; i++)
{
rt_kprintf("%d ", data[i]);
}
rt_kprintf(".\n");
}
rt_free(data);
}
else
{
rt_kprintf("Low memory!\n");
}
}
}
else if (!rt_strcmp(operator, "erase"))
{
if (argc < 4)
{
rt_kprintf("Usage: %s.\n", help_info[CMD_ERASE_INDEX]);
return;
}
else
{
addr = strtol(argv[2], NULL, 0);
size = strtol(argv[3], NULL, 0);
if (flash_dev)
{
result = flash_dev->ops.erase(addr, size);
}
else if (part_dev)
{
result = fal_partition_erase(part_dev, addr, size);
}
if (result >= 0)
{
rt_kprintf("Erase data success. Start from 0x%08X, size is %ld.\n", addr, size);
}
}
}
else if (!strcmp(operator, "bench"))
{
if (argc < 3)
{
rt_kprintf("Usage: %s.\n", help_info[CMD_BENCH_INDEX]);
return;
}
else if ((argc > 3 && strcmp(argv[3], "yes")) || argc < 4)
{
rt_kprintf("DANGER: It will erase full chip or partition! Please run 'fal bench %d yes'.\n", strtol(argv[2], NULL, 0));
return;
}
/* full chip benchmark test */
uint32_t start_time, time_cast;
size_t write_size = strtol(argv[2], NULL, 0), read_size = strtol(argv[2], NULL, 0), cur_op_size;
uint8_t *write_data = (uint8_t *)rt_malloc(write_size), *read_data = (uint8_t *)rt_malloc(read_size);
if (write_data && read_data)
{
for (i = 0; i < write_size; i ++) {
write_data[i] = i & 0xFF;
}
if (flash_dev)
{
size = flash_dev->len;
}
else if (part_dev)
{
size = part_dev->len;
}
/* benchmark testing */
rt_kprintf("Erasing %ld bytes data, waiting...\n", size);
start_time = rt_tick_get();
if (flash_dev)
{
result = flash_dev->ops.erase(0, size);
}
else if (part_dev)
{
result = fal_partition_erase(part_dev, 0, size);
}
if (result >= 0)
{
time_cast = rt_tick_get() - start_time;
rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
}
else
{
rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
}
/* write test */
rt_kprintf("Writing %ld bytes data, waiting...\n", size);
start_time = rt_tick_get();
for (i = 0; i < size; i += write_size)
{
if (i + write_size <= size)
{
cur_op_size = write_size;
}
else
{
cur_op_size = size - i;
}
if (flash_dev)
{
result = flash_dev->ops.write(i, write_data, cur_op_size);
}
else if (part_dev)
{
result = fal_partition_write(part_dev, i, write_data, cur_op_size);
}
if (result < 0)
{
break;
}
}
if (result >= 0)
{
time_cast = rt_tick_get() - start_time;
rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
}
else
{
rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
}
/* read test */
rt_kprintf("Reading %ld bytes data, waiting...\n", size);
start_time = rt_tick_get();
for (i = 0; i < size; i += read_size)
{
if (i + read_size <= size)
{
cur_op_size = read_size;
}
else
{
cur_op_size = size - i;
}
if (flash_dev)
{
result = flash_dev->ops.read(i, read_data, cur_op_size);
}
else if (part_dev)
{
result = fal_partition_read(part_dev, i, read_data, cur_op_size);
}
/* data check */
for (size_t index = 0; index < cur_op_size; index ++)
{
if (write_data[index] != read_data[index])
{
rt_kprintf("%d %d %02x %02x.\n", i, index, write_data[index], read_data[index]);
}
}
if (memcmp(write_data, read_data, cur_op_size))
{
result = -RT_ERROR;
rt_kprintf("Data check ERROR! Please check you flash by other command.\n");
}
/* has an error */
if (result < 0)
{
break;
}
}
if (result >= 0)
{
time_cast = rt_tick_get() - start_time;
rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
}
else
{
rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
}
}
else
{
rt_kprintf("Low memory!\n");
}
rt_free(write_data);
rt_free(read_data);
}
else
{
rt_kprintf("Usage:\n");
for (i = 0; i < sizeof(help_info) / sizeof(char*); i++)
{
rt_kprintf("%s\n", help_info[i]);
}
rt_kprintf("\n");
return;
}
if (result < 0) {
rt_kprintf("This operate has an error. Error code: %d.\n", result);
}
}
}
}
MSH_CMD_EXPORT(fal, FAL (Flash Abstraction Layer) operate.);
#endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
#endif /* RT_VER_NUM */