rt-thread/libcpu/arm/cortex-m7/cpuport.c

488 lines
12 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2011-10-21 Bernard the first version.
* 2011-10-27 aozima update for cortex-M4 FPU.
* 2011-12-31 aozima fixed stack align issues.
* 2012-01-01 aozima support context switch load/store FPU register.
* 2012-12-11 lgnq fixed the coding style.
* 2012-12-23 aozima stack addr align to 8byte.
* 2012-12-29 Bernard Add exception hook.
* 2013-06-23 aozima support lazy stack optimized.
* 2018-07-24 aozima enhancement hard fault exception handler.
*/
#include <rtthread.h>
#if /* ARMCC */ ( (defined ( __CC_ARM ) && defined ( __TARGET_FPU_VFP )) \
/* Clang */ || (defined ( __CLANG_ARM ) && defined ( __VFP_FP__ ) && !defined(__SOFTFP__)) \
/* IAR */ || (defined ( __ICCARM__ ) && defined ( __ARMVFP__ )) \
/* GNU */ || (defined ( __GNUC__ ) && defined ( __VFP_FP__ ) && !defined(__SOFTFP__)) )
#define USE_FPU 1
#else
#define USE_FPU 0
#endif
/* exception and interrupt handler table */
rt_uint32_t rt_interrupt_from_thread;
rt_uint32_t rt_interrupt_to_thread;
rt_uint32_t rt_thread_switch_interrupt_flag;
/* exception hook */
static rt_err_t (*rt_exception_hook)(void *context) = RT_NULL;
struct exception_stack_frame
{
rt_uint32_t r0;
rt_uint32_t r1;
rt_uint32_t r2;
rt_uint32_t r3;
rt_uint32_t r12;
rt_uint32_t lr;
rt_uint32_t pc;
rt_uint32_t psr;
};
struct stack_frame
{
#if USE_FPU
rt_uint32_t flag;
#endif /* USE_FPU */
/* r4 ~ r11 register */
rt_uint32_t r4;
rt_uint32_t r5;
rt_uint32_t r6;
rt_uint32_t r7;
rt_uint32_t r8;
rt_uint32_t r9;
rt_uint32_t r10;
rt_uint32_t r11;
struct exception_stack_frame exception_stack_frame;
};
struct exception_stack_frame_fpu
{
rt_uint32_t r0;
rt_uint32_t r1;
rt_uint32_t r2;
rt_uint32_t r3;
rt_uint32_t r12;
rt_uint32_t lr;
rt_uint32_t pc;
rt_uint32_t psr;
#if USE_FPU
/* FPU register */
rt_uint32_t S0;
rt_uint32_t S1;
rt_uint32_t S2;
rt_uint32_t S3;
rt_uint32_t S4;
rt_uint32_t S5;
rt_uint32_t S6;
rt_uint32_t S7;
rt_uint32_t S8;
rt_uint32_t S9;
rt_uint32_t S10;
rt_uint32_t S11;
rt_uint32_t S12;
rt_uint32_t S13;
rt_uint32_t S14;
rt_uint32_t S15;
rt_uint32_t FPSCR;
rt_uint32_t NO_NAME;
#endif
};
struct stack_frame_fpu
{
rt_uint32_t flag;
/* r4 ~ r11 register */
rt_uint32_t r4;
rt_uint32_t r5;
rt_uint32_t r6;
rt_uint32_t r7;
rt_uint32_t r8;
rt_uint32_t r9;
rt_uint32_t r10;
rt_uint32_t r11;
#if USE_FPU
/* FPU register s16 ~ s31 */
rt_uint32_t s16;
rt_uint32_t s17;
rt_uint32_t s18;
rt_uint32_t s19;
rt_uint32_t s20;
rt_uint32_t s21;
rt_uint32_t s22;
rt_uint32_t s23;
rt_uint32_t s24;
rt_uint32_t s25;
rt_uint32_t s26;
rt_uint32_t s27;
rt_uint32_t s28;
rt_uint32_t s29;
rt_uint32_t s30;
rt_uint32_t s31;
#endif
struct exception_stack_frame_fpu exception_stack_frame;
};
rt_uint8_t *rt_hw_stack_init(void *tentry,
void *parameter,
rt_uint8_t *stack_addr,
void *texit)
{
struct stack_frame *stack_frame;
rt_uint8_t *stk;
unsigned long i;
stk = stack_addr + sizeof(rt_uint32_t);
stk = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stk, 8);
stk -= sizeof(struct stack_frame);
stack_frame = (struct stack_frame *)stk;
/* init all register */
for (i = 0; i < sizeof(struct stack_frame) / sizeof(rt_uint32_t); i ++)
{
((rt_uint32_t *)stack_frame)[i] = 0xdeadbeef;
}
stack_frame->exception_stack_frame.r0 = (unsigned long)parameter; /* r0 : argument */
stack_frame->exception_stack_frame.r1 = 0; /* r1 */
stack_frame->exception_stack_frame.r2 = 0; /* r2 */
stack_frame->exception_stack_frame.r3 = 0; /* r3 */
stack_frame->exception_stack_frame.r12 = 0; /* r12 */
stack_frame->exception_stack_frame.lr = (unsigned long)texit; /* lr */
stack_frame->exception_stack_frame.pc = (unsigned long)tentry; /* entry point, pc */
stack_frame->exception_stack_frame.psr = 0x01000000L; /* PSR */
#if USE_FPU
stack_frame->flag = 0;
#endif /* USE_FPU */
/* return task's current stack address */
return stk;
}
/**
* This function set the hook, which is invoked on fault exception handling.
*
* @param exception_handle the exception handling hook function.
*/
void rt_hw_exception_install(rt_err_t (*exception_handle)(void *context))
{
rt_exception_hook = exception_handle;
}
#define SCB_CFSR (*(volatile const unsigned *)0xE000ED28) /* Configurable Fault Status Register */
#define SCB_HFSR (*(volatile const unsigned *)0xE000ED2C) /* HardFault Status Register */
#define SCB_MMAR (*(volatile const unsigned *)0xE000ED34) /* MemManage Fault Address register */
#define SCB_BFAR (*(volatile const unsigned *)0xE000ED38) /* Bus Fault Address Register */
#define SCB_AIRCR (*(volatile unsigned long *)0xE000ED0C) /* Reset control Address Register */
#define SCB_RESET_VALUE 0x05FA0004 /* Reset value, write to SCB_AIRCR can reset cpu */
#define SCB_CFSR_MFSR (*(volatile const unsigned char*)0xE000ED28) /* Memory-management Fault Status Register */
#define SCB_CFSR_BFSR (*(volatile const unsigned char*)0xE000ED29) /* Bus Fault Status Register */
#define SCB_CFSR_UFSR (*(volatile const unsigned short*)0xE000ED2A) /* Usage Fault Status Register */
#ifdef RT_USING_FINSH
static void usage_fault_track(void)
{
rt_kprintf("usage fault:\n");
rt_kprintf("SCB_CFSR_UFSR:0x%02X ", SCB_CFSR_UFSR);
if(SCB_CFSR_UFSR & (1<<0))
{
/* [0]:UNDEFINSTR */
rt_kprintf("UNDEFINSTR ");
}
if(SCB_CFSR_UFSR & (1<<1))
{
/* [1]:INVSTATE */
rt_kprintf("INVSTATE ");
}
if(SCB_CFSR_UFSR & (1<<2))
{
/* [2]:INVPC */
rt_kprintf("INVPC ");
}
if(SCB_CFSR_UFSR & (1<<3))
{
/* [3]:NOCP */
rt_kprintf("NOCP ");
}
if(SCB_CFSR_UFSR & (1<<8))
{
/* [8]:UNALIGNED */
rt_kprintf("UNALIGNED ");
}
if(SCB_CFSR_UFSR & (1<<9))
{
/* [9]:DIVBYZERO */
rt_kprintf("DIVBYZERO ");
}
rt_kprintf("\n");
}
static void bus_fault_track(void)
{
rt_kprintf("bus fault:\n");
rt_kprintf("SCB_CFSR_BFSR:0x%02X ", SCB_CFSR_BFSR);
if(SCB_CFSR_BFSR & (1<<0))
{
/* [0]:IBUSERR */
rt_kprintf("IBUSERR ");
}
if(SCB_CFSR_BFSR & (1<<1))
{
/* [1]:PRECISERR */
rt_kprintf("PRECISERR ");
}
if(SCB_CFSR_BFSR & (1<<2))
{
/* [2]:IMPRECISERR */
rt_kprintf("IMPRECISERR ");
}
if(SCB_CFSR_BFSR & (1<<3))
{
/* [3]:UNSTKERR */
rt_kprintf("UNSTKERR ");
}
if(SCB_CFSR_BFSR & (1<<4))
{
/* [4]:STKERR */
rt_kprintf("STKERR ");
}
if(SCB_CFSR_BFSR & (1<<7))
{
rt_kprintf("SCB->BFAR:%08X\n", SCB_BFAR);
}
else
{
rt_kprintf("\n");
}
}
static void mem_manage_fault_track(void)
{
rt_kprintf("mem manage fault:\n");
rt_kprintf("SCB_CFSR_MFSR:0x%02X ", SCB_CFSR_MFSR);
if(SCB_CFSR_MFSR & (1<<0))
{
/* [0]:IACCVIOL */
rt_kprintf("IACCVIOL ");
}
if(SCB_CFSR_MFSR & (1<<1))
{
/* [1]:DACCVIOL */
rt_kprintf("DACCVIOL ");
}
if(SCB_CFSR_MFSR & (1<<3))
{
/* [3]:MUNSTKERR */
rt_kprintf("MUNSTKERR ");
}
if(SCB_CFSR_MFSR & (1<<4))
{
/* [4]:MSTKERR */
rt_kprintf("MSTKERR ");
}
if(SCB_CFSR_MFSR & (1<<7))
{
/* [7]:MMARVALID */
rt_kprintf("SCB->MMAR:%08X\n", SCB_MMAR);
}
else
{
rt_kprintf("\n");
}
}
static void hard_fault_track(void)
{
if(SCB_HFSR & (1UL<<1))
{
/* [1]:VECTBL, Indicates hard fault is caused by failed vector fetch. */
rt_kprintf("failed vector fetch\n");
}
if(SCB_HFSR & (1UL<<30))
{
/* [30]:FORCED, Indicates hard fault is taken because of bus fault,
memory management fault, or usage fault. */
if(SCB_CFSR_BFSR)
{
bus_fault_track();
}
if(SCB_CFSR_MFSR)
{
mem_manage_fault_track();
}
if(SCB_CFSR_UFSR)
{
usage_fault_track();
}
}
if(SCB_HFSR & (1UL<<31))
{
/* [31]:DEBUGEVT, Indicates hard fault is triggered by debug event. */
rt_kprintf("debug event\n");
}
}
#endif /* RT_USING_FINSH */
struct exception_info
{
rt_uint32_t exc_return;
struct stack_frame stack_frame;
};
void rt_hw_hard_fault_exception(struct exception_info *exception_info)
{
extern long list_thread(void);
struct exception_stack_frame *exception_stack = &exception_info->stack_frame.exception_stack_frame;
struct stack_frame *context = &exception_info->stack_frame;
if (rt_exception_hook != RT_NULL)
{
rt_err_t result;
result = rt_exception_hook(exception_stack);
if (result == RT_EOK) return;
}
rt_kprintf("psr: 0x%08x\n", context->exception_stack_frame.psr);
rt_kprintf("r00: 0x%08x\n", context->exception_stack_frame.r0);
rt_kprintf("r01: 0x%08x\n", context->exception_stack_frame.r1);
rt_kprintf("r02: 0x%08x\n", context->exception_stack_frame.r2);
rt_kprintf("r03: 0x%08x\n", context->exception_stack_frame.r3);
rt_kprintf("r04: 0x%08x\n", context->r4);
rt_kprintf("r05: 0x%08x\n", context->r5);
rt_kprintf("r06: 0x%08x\n", context->r6);
rt_kprintf("r07: 0x%08x\n", context->r7);
rt_kprintf("r08: 0x%08x\n", context->r8);
rt_kprintf("r09: 0x%08x\n", context->r9);
rt_kprintf("r10: 0x%08x\n", context->r10);
rt_kprintf("r11: 0x%08x\n", context->r11);
rt_kprintf("r12: 0x%08x\n", context->exception_stack_frame.r12);
rt_kprintf(" lr: 0x%08x\n", context->exception_stack_frame.lr);
rt_kprintf(" pc: 0x%08x\n", context->exception_stack_frame.pc);
if (exception_info->exc_return & (1 << 2))
{
rt_kprintf("hard fault on thread: %s\r\n\r\n", rt_thread_self()->name);
#ifdef RT_USING_FINSH
list_thread();
#endif
}
else
{
rt_kprintf("hard fault on handler\r\n\r\n");
}
if ( (exception_info->exc_return & 0x10) == 0)
{
rt_kprintf("FPU active!\r\n");
}
#ifdef RT_USING_FINSH
hard_fault_track();
#endif /* RT_USING_FINSH */
while (1);
}
/**
* shutdown CPU
*/
void rt_hw_cpu_shutdown(void)
{
rt_kprintf("shutdown...\n");
RT_ASSERT(0);
}
/**
* reset CPU
*/
RT_WEAK void rt_hw_cpu_reset(void)
{
SCB_AIRCR = SCB_RESET_VALUE;
}
#ifdef RT_USING_CPU_FFS
/**
* This function finds the first bit set (beginning with the least significant bit)
* in value and return the index of that bit.
*
* Bits are numbered starting at 1 (the least significant bit). A return value of
* zero from any of these functions means that the argument was zero.
*
* @return return the index of the first bit set. If value is 0, then this function
* shall return 0.
*/
#if defined(__CC_ARM) || defined(__CLANG_ARM)
__asm int __rt_ffs(int value)
{
CMP r0, #0x00
BEQ exit
RBIT r0, r0
CLZ r0, r0
ADDS r0, r0, #0x01
exit
BX lr
}
#elif defined(__IAR_SYSTEMS_ICC__)
int __rt_ffs(int value)
{
if (value == 0) return value;
asm("RBIT %0, %1" : "=r"(value) : "r"(value));
asm("CLZ %0, %1" : "=r"(value) : "r"(value));
asm("ADDS %0, %1, #0x01" : "=r"(value) : "r"(value));
return value;
}
#elif defined(__GNUC__)
int __rt_ffs(int value)
{
return __builtin_ffs(value);
}
#endif
#endif