rt-thread/bsp/pic32ethernet/uart.c

296 lines
8.6 KiB
C

#include <GenericTypeDefs.h>
#include <plib.h>
#include <rtthread.h>
#include "uart.h"
#define GetSystemClock() (80000000ul)
#define GetPeripheralClock() (GetSystemClock()/(1 << OSCCONbits.PBDIV))
#define GetInstructionClock() (GetSystemClock())
struct rt_uart_pic32
{
struct rt_device parent;
int uart; /* UART Module ID. */
/* buffer for reception */
rt_uint8_t read_index, save_index;
rt_uint8_t rx_buffer[RT_UART_RX_BUFFER_SIZE];
};
#ifdef RT_USING_UART1
static struct rt_uart_pic32 uart1_device;
#endif
#ifdef RT_USING_UART2
static struct rt_uart_pic32 uart2_device;
#endif
static rt_err_t rt_uart_init (rt_device_t dev)
{
struct rt_uart_pic32 *uart_device = (struct rt_uart_pic32*)dev;
UARTConfigure(uart_device->uart, UART_ENABLE_PINS_TX_RX_ONLY);
UARTSetFifoMode(uart_device->uart, UART_INTERRUPT_ON_TX_NOT_FULL | UART_INTERRUPT_ON_RX_NOT_EMPTY);
UARTSetLineControl(uart_device->uart, UART_DATA_SIZE_8_BITS | UART_PARITY_NONE | UART_STOP_BITS_1);
UARTSetDataRate(uart_device->uart, GetPeripheralClock(), 115200);
UARTEnable(uart_device->uart, UART_ENABLE_FLAGS(UART_PERIPHERAL | UART_RX | UART_TX));
// Configure UART RX Interrupt
INTEnable(INT_SOURCE_UART_RX(uart_device->uart), INT_ENABLED);
INTSetVectorPriority(INT_VECTOR_UART(uart_device->uart), INT_PRIORITY_LEVEL_2);
INTSetVectorSubPriority(INT_VECTOR_UART(uart_device->uart), INT_SUB_PRIORITY_LEVEL_0);
return RT_EOK;
}
static rt_err_t rt_uart_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_uart_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_ssize_t rt_uart_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_uint8_t* ptr;
struct rt_uart_pic32 *uart_device = (struct rt_uart_pic32*)dev;
RT_ASSERT(uart_device != RT_NULL);
/* point to buffer */
ptr = (rt_uint8_t*) buffer;
if (dev->flag & RT_DEVICE_FLAG_INT_RX)
{
while (size)
{
/* interrupt receive */
rt_base_t level;
/* disable interrupt */
level = rt_hw_interrupt_disable();
if (uart_device->read_index != uart_device->save_index)
{
*ptr = uart_device->rx_buffer[uart_device->read_index];
uart_device->read_index ++;
if (uart_device->read_index >= RT_UART_RX_BUFFER_SIZE)
uart_device->read_index = 0;
}
else
{
/* no data in rx buffer */
/* enable interrupt */
rt_hw_interrupt_enable(level);
break;
}
/* enable interrupt */
rt_hw_interrupt_enable(level);
ptr ++;
size --;
}
return (rt_uint32_t)ptr - (rt_uint32_t)buffer;
}
return 0;
}
static rt_ssize_t rt_uart_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
struct rt_uart_pic32 *uart_device = (struct rt_uart_pic32*)dev;
char *ptr;
ptr = (char*)buffer;
if (dev->flag & RT_DEVICE_FLAG_STREAM)
{
/* stream mode */
while (size)
{
if (*ptr == '\n')
{
while(!UARTTransmitterIsReady(uart_device->uart));
UARTSendDataByte(uart_device->uart,'\r' );
while(!UARTTransmissionHasCompleted(uart_device->uart));
}
while(!UARTTransmitterIsReady(uart_device->uart));
UARTSendDataByte(uart_device->uart, *ptr);
while(!UARTTransmissionHasCompleted(uart_device->uart));
ptr ++;
size --;
}
}
else
{
while ( size != 0 )
{
while(!UARTTransmitterIsReady(uart_device->uart));
UARTSendDataByte(uart_device->uart, *ptr);
while(!UARTTransmissionHasCompleted(uart_device->uart));
ptr++;
size--;
}
}
return (rt_size_t) ptr - (rt_size_t) buffer;
}
#ifdef RT_USING_UART1
// UART 1 interrupt handler
// it is set at priority level 2
void __ISR(_UART1_VECTOR, ipl2) IntUART1Handler(void)
{
struct rt_uart_pic32 *uart_device = &uart1_device;
// Is this an RX interrupt?
if(INTGetFlag(INT_SOURCE_UART_RX(uart_device->uart)))
{
while( U1STAbits.URXDA )
{
/* Receive Data Available */
uart_device->rx_buffer[uart_device->save_index] = UARTGetDataByte(uart_device->uart);//UARTGetDataByte(UART1);
uart_device->save_index ++;
if (uart_device->save_index >= RT_UART_RX_BUFFER_SIZE)
{
uart_device->save_index = 0;
}
}
/* invoke callback */
if(uart_device->parent.rx_indicate != RT_NULL)
{
rt_size_t length;
if (uart_device->read_index > uart_device->save_index)
{
length = RT_UART_RX_BUFFER_SIZE - uart_device->read_index + uart_device->save_index;
}
else
{
length = uart_device->save_index - uart_device->read_index;
}
if( length )
{
uart_device->parent.rx_indicate(&uart_device->parent, length);
}
}
// Clear the RX interrupt Flag
INTClearFlag(INT_SOURCE_UART_RX(uart_device->uart));
} // Is this an RX interrupt?
// We don't care about TX interrupt
if ( INTGetFlag(INT_SOURCE_UART_TX(uart_device->uart)) )
{
INTClearFlag(INT_SOURCE_UART_TX(uart_device->uart));
}
}
#endif
#ifdef RT_USING_UART2
// UART 2 interrupt handler
// it is set at priority level 2
void __ISR(_UART2_VECTOR, ipl2) IntUART2Handler(void)
{
struct rt_uart_pic32 *uart_device = &uart2_device;
// Is this an RX interrupt?
if(INTGetFlag(INT_SOURCE_UART_RX(uart_device->uart)))
{
while( U2STAbits.URXDA )
{
/* Receive Data Available */
uart_device->rx_buffer[uart_device->save_index] = UARTGetDataByte(uart_device->uart);//UARTGetDataByte(UART1);
uart_device->save_index ++;
if (uart_device->save_index >= RT_UART_RX_BUFFER_SIZE)
{
uart_device->save_index = 0;
}
}
/* invoke callback */
if(uart_device->parent.rx_indicate != RT_NULL)
{
rt_size_t length;
if (uart_device->read_index > uart_device->save_index)
{
length = RT_UART_RX_BUFFER_SIZE - uart_device->read_index + uart_device->save_index;
}
else
{
length = uart_device->save_index - uart_device->read_index;
}
if( length )
{
uart_device->parent.rx_indicate(&uart_device->parent, length);
}
}
// Clear the RX interrupt Flag
INTClearFlag(INT_SOURCE_UART_RX(uart_device->uart));
} // Is this an RX interrupt?
// We don't care about TX interrupt
if ( INTGetFlag(INT_SOURCE_UART_TX(uart_device->uart)) )
{
INTClearFlag(INT_SOURCE_UART_TX(uart_device->uart));
}
}
#endif
void rt_hw_usart_init(void)
{
struct rt_uart_pic32 *uart_device;
#ifdef RT_USING_UART1
/* device initialization */
uart_device = &uart1_device;
rt_memset(uart_device,0,sizeof(struct rt_uart_pic32));
uart_device->uart = UART1;
uart_device->parent.type = RT_Device_Class_Char;
/* device interface */
uart_device->parent.init = rt_uart_init;
uart_device->parent.open = rt_uart_open;
uart_device->parent.close = rt_uart_close;
uart_device->parent.read = rt_uart_read;
uart_device->parent.write = rt_uart_write;
uart_device->parent.control = RT_NULL;
uart_device->parent.user_data = RT_NULL;
rt_device_register(&uart_device->parent,
"uart1", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STREAM | RT_DEVICE_FLAG_INT_RX);
#endif
#ifdef RT_USING_UART2
/* device initialization */
uart_device = &uart2_device;
rt_memset(uart_device,0,sizeof(struct rt_uart_pic32));
uart_device->uart = UART2;
uart_device->parent.type = RT_Device_Class_Char;
/* device interface */
uart_device->parent.init = rt_uart_init;
uart_device->parent.open = rt_uart_open;
uart_device->parent.close = rt_uart_close;
uart_device->parent.read = rt_uart_read;
uart_device->parent.write = rt_uart_write;
uart_device->parent.control = RT_NULL;
uart_device->parent.user_data = RT_NULL;
rt_device_register(&uart_device->parent,
"uart2", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STREAM | RT_DEVICE_FLAG_INT_RX);
#endif
}