233 lines
5.8 KiB
C
233 lines
5.8 KiB
C
/*
|
|
* Copyright (c) 2006-2024, RT-Thread Development Team
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Change Logs:
|
|
* Date Author Notes
|
|
* 2024-01-25 Shell init ver.
|
|
*/
|
|
#define __RT_KERNEL_SOURCE__
|
|
#include <rtthread.h>
|
|
#include <stdlib.h>
|
|
#include "utest.h"
|
|
|
|
#define TEST_SECONDS 10
|
|
#define TEST_LOOP_TICKS (TEST_SECONDS * RT_TICK_PER_SECOND)
|
|
#define TEST_PROGRESS_COUNTS (36)
|
|
#define TEST_PROGRESS_ON (TEST_LOOP_TICKS*2/TEST_PROGRESS_COUNTS)
|
|
|
|
static struct rt_semaphore _thr_exit_sem;
|
|
static struct rt_mutex _ipc_primitive;
|
|
static struct rt_semaphore _cons_can_take_mtx;
|
|
static struct rt_semaphore _prod_can_take_mtx;
|
|
static rt_atomic_t _progress_counter;
|
|
#define CONSUMER_MAGIC 0x11223344
|
|
#define PRODUCER_MAGIC 0x44332211
|
|
static rt_atomic_t _last_holder_flag = CONSUMER_MAGIC;
|
|
static rt_base_t _timedout_failed_times = 0;
|
|
|
|
/**
|
|
* Test on timedout IPC with racing condition where timedout routine and producer
|
|
* thread may race to wakeup sleeper.
|
|
*
|
|
* This test will fork 2 thread, one producer and one consumer. The producer will
|
|
* looping and trigger the IPC on the edge of new tick arrives. The consumer will
|
|
* wait on IPC with a timedout of 1 tick.
|
|
*/
|
|
|
|
static void _wait_until_edge(void)
|
|
{
|
|
rt_tick_t entry_level, current;
|
|
rt_base_t random_latency;
|
|
|
|
entry_level = rt_tick_get();
|
|
do
|
|
{
|
|
current = rt_tick_get();
|
|
}
|
|
while (current == entry_level);
|
|
|
|
/* give a random latency for test */
|
|
random_latency = rand() % 1000 * 1000;
|
|
entry_level = current;
|
|
for (size_t i = 0; i < random_latency; i++)
|
|
{
|
|
current = rt_tick_get();
|
|
if (current != entry_level)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void _producer_entry(void *param)
|
|
{
|
|
rt_err_t error;
|
|
for (size_t i = 0; i < TEST_LOOP_TICKS; i++)
|
|
{
|
|
/**
|
|
* only try to take mutex after consumer have taken it after last
|
|
* release from us.
|
|
*/
|
|
error = rt_sem_take(&_prod_can_take_mtx, RT_WAITING_FOREVER);
|
|
if (error)
|
|
{
|
|
uassert_true(0);
|
|
break;
|
|
}
|
|
|
|
error = rt_mutex_take(&_ipc_primitive, RT_WAITING_FOREVER);
|
|
if (error)
|
|
{
|
|
uassert_true(0);
|
|
break;
|
|
}
|
|
|
|
/* ensure that mutex should be held in round-robin method */
|
|
if (rt_atomic_load(&_last_holder_flag) != CONSUMER_MAGIC)
|
|
{
|
|
uassert_true(0);
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
rt_atomic_store(&_last_holder_flag, PRODUCER_MAGIC);
|
|
rt_sem_release(&_cons_can_take_mtx);
|
|
}
|
|
|
|
_wait_until_edge();
|
|
|
|
rt_mutex_release(&_ipc_primitive);
|
|
|
|
if (rt_atomic_add(&_progress_counter, 1) % TEST_PROGRESS_ON == 0)
|
|
uassert_true(1);
|
|
}
|
|
|
|
rt_sem_release(&_thr_exit_sem);
|
|
return;
|
|
}
|
|
|
|
static void _consumer_entry(void *param)
|
|
{
|
|
rt_err_t error;
|
|
for (size_t i = 0; i < TEST_LOOP_TICKS; i++)
|
|
{
|
|
/**
|
|
* only try to take mutex after producer have taken it after last
|
|
* release from us.
|
|
*/
|
|
error = rt_sem_take(&_cons_can_take_mtx, RT_WAITING_FOREVER);
|
|
if (error)
|
|
{
|
|
uassert_true(0);
|
|
break;
|
|
}
|
|
|
|
while (1)
|
|
{
|
|
error = rt_mutex_take_interruptible(&_ipc_primitive, 1);
|
|
if (error == -RT_ETIMEOUT)
|
|
{
|
|
_timedout_failed_times++;
|
|
if (rt_mutex_get_owner(&_ipc_primitive) == rt_thread_self())
|
|
{
|
|
uassert_true(0);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (error != RT_EOK)
|
|
{
|
|
uassert_true(0);
|
|
break;
|
|
}
|
|
|
|
/* ensure that mutex should be held in round-robin method */
|
|
if (rt_atomic_load(&_last_holder_flag) != PRODUCER_MAGIC)
|
|
{
|
|
uassert_true(0);
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
rt_atomic_store(&_last_holder_flag, CONSUMER_MAGIC);
|
|
rt_sem_release(&_prod_can_take_mtx);
|
|
}
|
|
|
|
rt_mutex_release(&_ipc_primitive);
|
|
if (rt_mutex_get_owner(&_ipc_primitive) == rt_thread_self())
|
|
{
|
|
uassert_true(0);
|
|
break;
|
|
}
|
|
|
|
if (rt_atomic_add(&_progress_counter, 1) % TEST_PROGRESS_ON == 0)
|
|
uassert_true(1);
|
|
}
|
|
|
|
rt_sem_release(&_thr_exit_sem);
|
|
return;
|
|
}
|
|
|
|
static void timed_mtx_tc(void)
|
|
{
|
|
rt_thread_t prod = rt_thread_create(
|
|
"prod",
|
|
_producer_entry,
|
|
(void *)0,
|
|
UTEST_THR_STACK_SIZE,
|
|
UTEST_THR_PRIORITY + 1,
|
|
4);
|
|
|
|
rt_thread_t cons = rt_thread_create(
|
|
"cons",
|
|
_consumer_entry,
|
|
(void *)0,
|
|
UTEST_THR_STACK_SIZE,
|
|
UTEST_THR_PRIORITY + 1,
|
|
100);
|
|
|
|
rt_thread_startup(prod);
|
|
rt_thread_startup(cons);
|
|
|
|
for (size_t i = 0; i < 2; i++)
|
|
{
|
|
uassert_int_equal(
|
|
rt_sem_take(&_thr_exit_sem, 2 * TEST_LOOP_TICKS),
|
|
RT_EOK);
|
|
}
|
|
|
|
/* Summary */
|
|
LOG_I("Total failed times: %ld(in %d)\n", _timedout_failed_times, TEST_LOOP_TICKS);
|
|
}
|
|
|
|
static rt_err_t utest_tc_init(void)
|
|
{
|
|
_timedout_failed_times = 0;
|
|
|
|
rt_mutex_init(&_ipc_primitive, "ipc", RT_IPC_FLAG_PRIO);
|
|
rt_sem_init(&_cons_can_take_mtx, "test", 0, RT_IPC_FLAG_PRIO);
|
|
rt_sem_init(&_prod_can_take_mtx, "test", 1, RT_IPC_FLAG_PRIO);
|
|
rt_sem_init(&_thr_exit_sem, "test", 0, RT_IPC_FLAG_PRIO);
|
|
return RT_EOK;
|
|
}
|
|
|
|
static rt_err_t utest_tc_cleanup(void)
|
|
{
|
|
rt_mutex_detach(&_ipc_primitive);
|
|
rt_sem_detach(&_cons_can_take_mtx);
|
|
rt_sem_detach(&_prod_can_take_mtx);
|
|
rt_sem_detach(&_thr_exit_sem);
|
|
return RT_EOK;
|
|
}
|
|
|
|
static void testcase(void)
|
|
{
|
|
UTEST_UNIT_RUN(timed_mtx_tc);
|
|
}
|
|
UTEST_TC_EXPORT(testcase, "testcases.kernel.scheduler.timed_mtx", utest_tc_init, utest_tc_cleanup, TEST_SECONDS * 2);
|