1774 lines
54 KiB
C

//###########################################################################
//
// FILE: uartstdio.c
//
// TITLE: Utility driver to provide simple UART console functions.
//
//###########################################################################
// $TI Release: F2837xD Support Library v3.05.00.00 $
// $Release Date: Tue Jun 26 03:15:23 CDT 2018 $
// $Copyright:
// Copyright (C) 2013-2018 Texas Instruments Incorporated - http://www.ti.com/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//###########################################################################
//
// Included Files
//
#include <stdbool.h>
#include <stdint.h>
#include <stdarg.h>
#include "inc/hw_ints.h"
#include "inc/hw_memmap.h"
#include "inc/hw_types.h"
#include "inc/hw_uart.h"
#include "driverlib/debug.h"
#include "driverlib/interrupt.h"
#include "driverlib/rom.h"
#include "driverlib/rom_map.h"
#include "driverlib/sysctl.h"
#include "driverlib/uart.h"
#include "utils/uartstdio.h"
//*****************************************************************************
//
//! \addtogroup uartstdio_api
//! @{
//
//*****************************************************************************
//
// If buffered mode is defined, set aside RX and TX buffers and read/write
// pointers to control them.
//
#ifdef UART_BUFFERED
//
// This global controls whether or not we are echoing characters back to the
// transmitter. By default, echo is enabled but if using this module as a
// convenient method of implementing a buffered serial interface over which
// you will be running an application protocol, you are likely to want to
// disable echo by calling UARTEchoSet(false).
//
static bool g_bDisableEcho;
//
// Output ring buffer. Buffer is full if g_ui32UARTTxReadIndex is one ahead of
// g_ui32UARTTxWriteIndex. Buffer is empty if the two indices are the same.
//
static unsigned char g_pcUARTTxBuffer[UART_TX_BUFFER_SIZE];
static volatile uint32_t g_ui32UARTTxWriteIndex = 0;
static volatile uint32_t g_ui32UARTTxReadIndex = 0;
//
// Input ring buffer. Buffer is full if g_ui32UARTTxReadIndex is one ahead of
// g_ui32UARTTxWriteIndex. Buffer is empty if the two indices are the same.
//
static unsigned char g_pcUARTRxBuffer[UART_RX_BUFFER_SIZE];
static volatile uint32_t g_ui32UARTRxWriteIndex = 0;
static volatile uint32_t g_ui32UARTRxReadIndex = 0;
//
// Macros to determine number of free and used bytes in the transmit buffer.
//
#define TX_BUFFER_USED (GetBufferCount(&g_ui32UARTTxReadIndex, \
&g_ui32UARTTxWriteIndex, \
UART_TX_BUFFER_SIZE))
#define TX_BUFFER_FREE (UART_TX_BUFFER_SIZE - TX_BUFFER_USED)
#define TX_BUFFER_EMPTY (IsBufferEmpty(&g_ui32UARTTxReadIndex, \
&g_ui32UARTTxWriteIndex))
#define TX_BUFFER_FULL (IsBufferFull(&g_ui32UARTTxReadIndex, \
&g_ui32UARTTxWriteIndex, \
UART_TX_BUFFER_SIZE))
#define ADVANCE_TX_BUFFER_INDEX(Index) \
(Index) = ((Index) + 1) % UART_TX_BUFFER_SIZE
//
// Macros to determine number of free and used bytes in the receive buffer.
//
#define RX_BUFFER_USED (GetBufferCount(&g_ui32UARTRxReadIndex, \
&g_ui32UARTRxWriteIndex, \
UART_RX_BUFFER_SIZE))
#define RX_BUFFER_FREE (UART_RX_BUFFER_SIZE - RX_BUFFER_USED)
#define RX_BUFFER_EMPTY (IsBufferEmpty(&g_ui32UARTRxReadIndex, \
&g_ui32UARTRxWriteIndex))
#define RX_BUFFER_FULL (IsBufferFull(&g_ui32UARTRxReadIndex, \
&g_ui32UARTRxWriteIndex, \
UART_RX_BUFFER_SIZE))
#define ADVANCE_RX_BUFFER_INDEX(Index) \
(Index) = ((Index) + 1) % UART_RX_BUFFER_SIZE
#endif
//
// The base address of the chosen UART.
//
static uint32_t g_ui32Base = 0;
//
// A mapping from an integer between 0 and 15 to its ASCII character
// equivalent.
//
static const char * const g_pcHex = "0123456789abcdef";
//
// The list of possible base addresses for the console UART.
//
static const uint32_t g_ui32UARTBase[4] =
{
UARTA_BASE, UARTB_BASE, UARTC_BASE, UARTD_BASE
};
#ifdef UART_BUFFERED
//
// The list of possible interrupts for the console UART.
//
static const uint32_t g_ui32UARTInt[3] =
{
INT_UART0, INT_UART1, INT_UART2
};
//
// The port number in use.
//
static uint32_t g_ui32PortNum;
#endif
//
// The list of UART peripherals.
//
static const uint32_t g_ui32UARTPeriph[3] =
{
SYSCTL_PERIPH_SCI1, SYSCTL_PERIPH_SCI2, SYSCTL_PERIPH_SCI3
};
//*****************************************************************************
//
//! Determines whether the ring buffer whose pointers and size are provided
//! is full or not.
//!
//! \param pui32Read points to the read index for the buffer.
//! \param pui32Write points to the write index for the buffer.
//! \param ui32Size is the size of the buffer in bytes.
//!
//! This function is used to determine whether or not a given ring buffer is
//! full. The structure of the code is specifically to ensure that we do not
//! see warnings from the compiler related to the order of volatile accesses
//! being undefined.
//!
//! \return Returns \b true if the buffer is full or \b false otherwise.
//
//*****************************************************************************
#ifdef UART_BUFFERED
static bool
IsBufferFull(volatile uint32_t *pui32Read,
volatile uint32_t *pui32Write, uint32_t ui32Size)
{
uint32_t ui32Write;
uint32_t ui32Read;
ui32Write = *pui32Write;
ui32Read = *pui32Read;
return((((ui32Write + 1) % ui32Size) == ui32Read) ? true : false);
}
#endif
//*****************************************************************************
//
//! Determines whether the ring buffer whose pointers and size are provided
//! is empty or not.
//!
//! \param pui32Read points to the read index for the buffer.
//! \param pui32Write points to the write index for the buffer.
//!
//! This function is used to determine whether or not a given ring buffer is
//! empty. The structure of the code is specifically to ensure that we do not
//! see warnings from the compiler related to the order of volatile accesses
//! being undefined.
//!
//! \return Returns \b true if the buffer is empty or \b false otherwise.
//
//*****************************************************************************
#ifdef UART_BUFFERED
static bool
IsBufferEmpty(volatile uint32_t *pui32Read,
volatile uint32_t *pui32Write)
{
uint32_t ui32Write;
uint32_t ui32Read;
ui32Write = *pui32Write;
ui32Read = *pui32Read;
return((ui32Write == ui32Read) ? true : false);
}
#endif
//*****************************************************************************
//
//! Determines the number of bytes of data contained in a ring buffer.
//!
//! \param pui32Read points to the read index for the buffer.
//! \param pui32Write points to the write index for the buffer.
//! \param ui32Size is the size of the buffer in bytes.
//!
//! This function is used to determine how many bytes of data a given ring
//! buffer currently contains. The structure of the code is specifically to
//! ensure that we do not see warnings from the compiler related to the order
//! of volatile accesses being undefined.
//!
//! \return Returns the number of bytes of data currently in the buffer.
//
//*****************************************************************************
#ifdef UART_BUFFERED
static uint32_t
GetBufferCount(volatile uint32_t *pui32Read,
volatile uint32_t *pui32Write, uint32_t ui32Size)
{
uint32_t ui32Write;
uint32_t ui32Read;
ui32Write = *pui32Write;
ui32Read = *pui32Read;
return((ui32Write >= ui32Read) ? (ui32Write - ui32Read) :
(ui32Size - (ui32Read - ui32Write)));
}
#endif
//*****************************************************************************
//
// Take as many bytes from the transmit buffer as we have space for and move
// them into the UART transmit FIFO.
//
//*****************************************************************************
#ifdef UART_BUFFERED
static void
UARTPrimeTransmit(uint32_t ui32Base)
{
//
// Do we have any data to transmit?
//
if(!TX_BUFFER_EMPTY)
{
//
// Disable the UART interrupt. If we don't do this there is a race
// condition which can cause the read index to be corrupted.
//
MAP_IntDisable(g_ui32UARTInt[g_ui32PortNum]);
//
// Yes - take some characters out of the transmit buffer and feed
// them to the UART transmit FIFO.
//
while(MAP_UARTSpaceAvail(ui32Base) && !TX_BUFFER_EMPTY)
{
MAP_UARTCharPutNonBlocking(ui32Base,
g_pcUARTTxBuffer[g_ui32UARTTxReadIndex]);
ADVANCE_TX_BUFFER_INDEX(g_ui32UARTTxReadIndex);
}
//
// Reenable the UART interrupt.
//
MAP_IntEnable(g_ui32UARTInt[g_ui32PortNum]);
}
}
#endif
//*****************************************************************************
//
//! Configures the UART console.
//!
//! \param ui32PortNum is the number of UART port to use for the serial console
//! (0-2)
//! \param ui32Baud is the bit rate that the UART is to be configured to use.
//! \param ui32SrcClock is the frequency of the source clock for the UART
//! module.
//!
//! This function will configure the specified serial port to be used as a
//! serial console. The serial parameters are set to the baud rate
//! specified by the \e ui32Baud parameter and use 8 bit, no parity, and 1 stop
//! bit.
//!
//! This function must be called prior to using any of the other UART console
//! functions: UARTprintf() or UARTgets(). This function assumes that the
//! caller has previously configured the relevant UART pins for operation as a
//! UART rather than as GPIOs.
//!
//! \return None.
//
//*****************************************************************************
void
UARTStdioConfig(uint32_t ui32PortNum, uint32_t ui32Baud, uint32_t ui32SrcClock)
{
//
// Check the arguments.
//
ASSERT((ui32PortNum == 0) || (ui32PortNum == 1) ||
(ui32PortNum == 2));
#ifdef UART_BUFFERED
//
// In buffered mode, we only allow a single instance to be opened.
//
ASSERT(g_ui32Base == 0);
#endif
//
// Check to make sure the UART peripheral is present.
//
if(!MAP_SysCtlPeripheralPresent(g_ui32UARTPeriph[ui32PortNum]))
{
return;
}
//
// Select the base address of the UART.
//
g_ui32Base = g_ui32UARTBase[ui32PortNum];
//
// Enable the UART peripheral for use.
//
MAP_SysCtlPeripheralEnable(g_ui32UARTPeriph[ui32PortNum]);
//
// Configure the UART for 115200, n, 8, 1
//
MAP_UARTConfigSetExpClk(g_ui32Base, ui32SrcClock, ui32Baud,
(UART_CONFIG_PAR_NONE | UART_CONFIG_STOP_ONE |
UART_CONFIG_WLEN_8));
#ifdef UART_BUFFERED
//
// Set the UART to interrupt whenever the TX FIFO is almost empty or
// when any character is received.
//
MAP_UARTFIFOLevelSet(g_ui32Base, UART_FIFO_TX1_8, UART_FIFO_RX1_8);
//
// Flush both the buffers.
//
UARTFlushRx();
UARTFlushTx(true);
//
// Remember which interrupt we are dealing with.
//
g_ui32PortNum = ui32PortNum;
//
// We are configured for buffered output so enable the master interrupt
// for this UART and the receive interrupts. We don't actually enable the
// transmit interrupt in the UART itself until some data has been placed
// in the transmit buffer.
//
MAP_UARTIntDisable(g_ui32Base, 0xFFFFFFFF);
MAP_UARTIntEnable(g_ui32Base, UART_INT_RX | UART_INT_RT);
MAP_IntEnable(g_ui32UARTInt[ui32PortNum]);
#endif
//
// Enable the UART operation.
//
MAP_UARTEnable(g_ui32Base);
}
//*****************************************************************************
//
//! Writes a string of characters to the UART output.
//!
//! \param pcBuf points to a buffer containing the string to transmit.
//! \param ui32Len is the length of the string to transmit.
//!
//! This function will transmit the string to the UART output. The number of
//! characters transmitted is determined by the \e ui32Len parameter. This
//! function does no interpretation or translation of any characters. Since
//! the output is sent to a UART, any LF (/n) characters encountered will be
//! replaced with a CRLF pair.
//!
//! Besides using the \e ui32Len parameter to stop transmitting the string, if
//! a null character (0) is encountered, then no more characters will be
//! transmitted and the function will return.
//!
//! In non-buffered mode, this function is blocking and will not return until
//! all the characters have been written to the output FIFO. In buffered mode,
//! the characters are written to the UART transmit buffer and the call returns
//! immediately. If insufficient space remains in the transmit buffer,
//! additional characters are discarded.
//!
//! \return Returns the count of characters written.
//
//*****************************************************************************
int
UARTwrite(const char *pcBuf, uint32_t ui32Len)
{
#ifdef UART_BUFFERED
unsigned int uIdx;
//
// Check for valid arguments.
//
ASSERT(pcBuf != 0);
ASSERT(g_ui32Base != 0);
//
// Send the characters
//
for(uIdx = 0; uIdx < ui32Len; uIdx++)
{
//
// If the character to the UART is \n, then add a \r before it so that
// \n is translated to \n\r in the output.
//
if(pcBuf[uIdx] == '\n')
{
if(!TX_BUFFER_FULL)
{
g_pcUARTTxBuffer[g_ui32UARTTxWriteIndex] = '\r';
ADVANCE_TX_BUFFER_INDEX(g_ui32UARTTxWriteIndex);
}
else
{
//
// Buffer is full - discard remaining characters and return.
//
break;
}
}
//
// Send the character to the UART output.
//
if(!TX_BUFFER_FULL)
{
g_pcUARTTxBuffer[g_ui32UARTTxWriteIndex] = pcBuf[uIdx];
ADVANCE_TX_BUFFER_INDEX(g_ui32UARTTxWriteIndex);
}
else
{
//
// Buffer is full - discard remaining characters and return.
//
break;
}
}
//
// If we have anything in the buffer, make sure that the UART is set
// up to transmit it.
//
if(!TX_BUFFER_EMPTY)
{
UARTPrimeTransmit(g_ui32Base);
MAP_UARTIntEnable(g_ui32Base, UART_INT_TX);
}
//
// Return the number of characters written.
//
return(uIdx);
#else
unsigned int uIdx;
//
// Check for valid UART base address, and valid arguments.
//
ASSERT(g_ui32Base != 0);
ASSERT(pcBuf != 0);
//
// Send the characters
//
for(uIdx = 0; uIdx < ui32Len; uIdx++)
{
//
// If the character to the UART is \n, then add a \r before it so that
// \n is translated to \n\r in the output.
//
if(pcBuf[uIdx] == '\n')
{
MAP_UARTCharPut(g_ui32Base, '\r');
}
//
// Send the character to the UART output.
//
MAP_UARTCharPut(g_ui32Base, pcBuf[uIdx]);
}
//
// Return the number of characters written.
//
return(uIdx);
#endif
}
//*****************************************************************************
//
//! A simple UART based get string function, with some line processing.
//!
//! \param pcBuf points to a buffer for the incoming string from the UART.
//! \param ui32Len is the length of the buffer for storage of the string,
//! including the trailing 0.
//!
//! This function will receive a string from the UART input and store the
//! characters in the buffer pointed to by \e pcBuf. The characters will
//! continue to be stored until a termination character is received. The
//! termination characters are CR, LF, or ESC. A CRLF pair is treated as a
//! single termination character. The termination characters are not stored in
//! the string. The string will be terminated with a 0 and the function will
//! return.
//!
//! In both buffered and unbuffered modes, this function will block until
//! a termination character is received. If non-blocking operation is required
//! in buffered mode, a call to UARTPeek() may be made to determine whether
//! a termination character already exists in the receive buffer prior to
//! calling UARTgets().
//!
//! Since the string will be null terminated, the user must ensure that the
//! buffer is sized to allow for the additional null character.
//!
//! \return Returns the count of characters that were stored, not including
//! the trailing 0.
//
//*****************************************************************************
int
UARTgets(char *pcBuf, uint32_t ui32Len)
{
#ifdef UART_BUFFERED
uint32_t ui32Count = 0;
int8_t cChar;
//
// Check the arguments.
//
ASSERT(pcBuf != 0);
ASSERT(ui32Len != 0);
ASSERT(g_ui32Base != 0);
//
// Adjust the length back by 1 to leave space for the trailing
// null terminator.
//
ui32Len--;
//
// Process characters until a newline is received.
//
while(1)
{
//
// Read the next character from the receive buffer.
//
if(!RX_BUFFER_EMPTY)
{
cChar = g_pcUARTRxBuffer[g_ui32UARTRxReadIndex];
ADVANCE_RX_BUFFER_INDEX(g_ui32UARTRxReadIndex);
//
// See if a newline or escape character was received.
//
if((cChar == '\r') || (cChar == '\n') || (cChar == 0x1b))
{
//
// Stop processing the input and end the line.
//
break;
}
//
// Process the received character as long as we are not at the end
// of the buffer. If the end of the buffer has been reached then
// all additional characters are ignored until a newline is
// received.
//
if(ui32Count < ui32Len)
{
//
// Store the character in the caller supplied buffer.
//
pcBuf[ui32Count] = cChar;
//
// Increment the count of characters received.
//
ui32Count++;
}
}
}
//
// Add a null termination to the string.
//
pcBuf[ui32Count] = 0;
//
// Return the count of int8_ts in the buffer, not counting the trailing 0.
//
return(ui32Count);
#else
uint32_t ui32Count = 0;
int8_t cChar;
static int8_t bLastWasCR = 0;
//
// Check the arguments.
//
ASSERT(pcBuf != 0);
ASSERT(ui32Len != 0);
ASSERT(g_ui32Base != 0);
//
// Adjust the length back by 1 to leave space for the trailing
// null terminator.
//
ui32Len--;
//
// Process characters until a newline is received.
//
while(1)
{
//
// Read the next character from the console.
//
cChar = MAP_UARTCharGet(g_ui32Base);
//
// See if the backspace key was pressed.
//
if(cChar == '\b')
{
//
// If there are any characters already in the buffer, then delete
// the last.
//
if(ui32Count)
{
//
// Rub out the previous character.
//
UARTwrite("\b \b", 3);
//
// Decrement the number of characters in the buffer.
//
ui32Count--;
}
//
// Skip ahead to read the next character.
//
continue;
}
//
// If this character is LF and last was CR, then just gobble up the
// character because the EOL processing was taken care of with the CR.
//
if((cChar == '\n') && bLastWasCR)
{
bLastWasCR = 0;
continue;
}
//
// See if a newline or escape character was received.
//
if((cChar == '\r') || (cChar == '\n') || (cChar == 0x1b))
{
//
// If the character is a CR, then it may be followed by a LF which
// should be paired with the CR. So remember that a CR was
// received.
//
if(cChar == '\r')
{
bLastWasCR = 1;
}
//
// Stop processing the input and end the line.
//
break;
}
//
// Process the received character as long as we are not at the end of
// the buffer. If the end of the buffer has been reached then all
// additional characters are ignored until a newline is received.
//
if(ui32Count < ui32Len)
{
//
// Store the character in the caller supplied buffer.
//
pcBuf[ui32Count] = cChar;
//
// Increment the count of characters received.
//
ui32Count++;
//
// Reflect the character back to the user.
//
MAP_UARTCharPut(g_ui32Base, cChar);
}
}
//
// Add a null termination to the string.
//
pcBuf[ui32Count] = 0;
//
// Send a CRLF pair to the terminal to end the line.
//
UARTwrite("\r\n", 2);
//
// Return the count of int8_ts in the buffer, not counting the trailing 0.
//
return(ui32Count);
#endif
}
//*****************************************************************************
//
//! Read a single character from the UART, blocking if necessary.
//!
//! This function will receive a single character from the UART and store it at
//! the supplied address.
//!
//! In both buffered and unbuffered modes, this function will block until a
//! character is received. If non-blocking operation is required in buffered
//! mode, a call to UARTRxAvail() may be made to determine whether any
//! characters are currently available for reading.
//!
//! \return Returns the character read.
//
//*****************************************************************************
unsigned char
UARTgetc(void)
{
#ifdef UART_BUFFERED
unsigned char cChar;
//
// Wait for a character to be received.
//
while(RX_BUFFER_EMPTY)
{
//
// Block waiting for a character to be received (if the buffer is
// currently empty).
//
}
//
// Read a character from the buffer.
//
cChar = g_pcUARTRxBuffer[g_ui32UARTRxReadIndex];
ADVANCE_RX_BUFFER_INDEX(g_ui32UARTRxReadIndex);
//
// Return the character to the caller.
//
return(cChar);
#else
//
// Block until a character is received by the UART then return it to
// the caller.
//
return(MAP_UARTCharGet(g_ui32Base));
#endif
}
//*****************************************************************************
//
//! A simple UART based vprintf function supporting \%c, \%d, \%p, \%s, \%u,
//! \%x, and \%X.
//!
//! \param pcString is the format string.
//! \param vaArgP is a variable argument list pointer whose content will depend
//! upon the format string passed in \e pcString.
//!
//! This function is very similar to the C library <tt>vprintf()</tt> function.
//! All of its output will be sent to the UART. Only the following formatting
//! characters are supported:
//!
//! - \%c to print a character
//! - \%d or \%i to print a decimal value
//! - \%l to print a long decimal value
//! - \%s to print a string
//! - \%u to print an unsigned decimal value
//! - \%x to print a hexadecimal value using lower case letters
//! - \%X to print a hexadecimal value using lower case letters (not upper case
//! letters as would typically be used)
//! - \%p to print a pointer as a hexadecimal value
//! - \%\% to print out a \% character
//!
//! For \%s, \%d, \%i, \%u, \%p, \%x, and \%X, an optional number may reside
//! between the \% and the format character, which specifies the minimum number
//! of characters to use for that value; if preceded by a 0 then the extra
//! characters will be filled with zeros instead of spaces. For example,
//! ``\%8d'' will use eight characters to print the decimal value with spaces
//! added to reach eight; ``\%08d'' will use eight characters as well but will
//! add zeroes instead of spaces.
//!
//! The type of the arguments in the variable arguments list must match the
//! requirements of the format string. For example, if an integer was passed
//! where a string was expected, an error of some kind will most likely occur.
//!
//! \return None.
//
//*****************************************************************************
void
UARTvprintf(const char *pcString, va_list vaArgP)
{
uint32_t ui32Idx, ui32Value, ui32Pos, ui32Count, ui32Base, ui32Neg;
char *pcStr, pcBuf[16], cFill;
//
// Check the arguments.
//
ASSERT(pcString != 0);
//
// Loop while there are more characters in the string.
//
while(*pcString)
{
//
// Find the first non-% character, or the end of the string.
//
for(ui32Idx = 0;
(pcString[ui32Idx] != '%') && (pcString[ui32Idx] != '\0');
ui32Idx++)
{
}
//
// Write this portion of the string.
//
UARTwrite(pcString, ui32Idx);
//
// Skip the portion of the string that was written.
//
pcString += ui32Idx;
//
// See if the next character is a %.
//
if(*pcString == '%')
{
//
// Skip the %.
//
pcString++;
//
// Set the digit count to zero, and the fill character to space
// (in other words, to the defaults).
//
ui32Count = 0;
cFill = ' ';
//
// It may be necessary to get back here to process more characters.
// Goto's aren't pretty, but effective. I feel extremely dirty for
// using not one but two of the beasts.
//
again:
//
// Determine how to handle the next character.
//
switch(*pcString++)
{
//
// Handle the digit characters.
//
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
//
// If this is a zero, and it is the first digit, then the
// fill character is a zero instead of a space.
//
if((pcString[-1] == '0') && (ui32Count == 0))
{
cFill = '0';
}
//
// Update the digit count.
//
ui32Count *= 10;
ui32Count += pcString[-1] - '0';
//
// Get the next character.
//
goto again;
}
//
// Handle the %c command.
//
case 'c':
{
//
// Get the value from the varargs.
//
ui32Value = va_arg(vaArgP, uint32_t);
//
// Print out the character.
//
UARTwrite((char *)&ui32Value, 1);
//
// This command has been handled.
//
break;
}
//
// Handle the %d and %i commands.
//
case 'd':
case 'i':
{
//
// Get the value from the varargs.
//
ui32Value = va_arg(vaArgP, uint16_t);
//
// Reset the buffer position.
//
ui32Pos = 0;
//
// If the value is negative, make it positive and indicate
// that a minus sign is needed.
//
if((int32_t)ui32Value < 0)
{
//
// Make the value positive.
//
ui32Value = -(int32_t)ui32Value;
//
// Indicate that the value is negative.
//
ui32Neg = 1;
}
else
{
//
// Indicate that the value is positive so that a minus
// sign isn't inserted.
//
ui32Neg = 0;
}
//
// Set the base to 10.
//
ui32Base = 10;
//
// Convert the value to ASCII.
//
goto convert;
}
//
// Handle the %l command.
//
case 'l':
{
//
// Get the value from the varargs.
//
ui32Value = va_arg(vaArgP, uint32_t);
//
// Reset the buffer position.
//
ui32Pos = 0;
//
// If the value is negative, make it positive and indicate
// that a minus sign is needed.
//
if((int32_t)ui32Value < 0)
{
//
// Make the value positive.
//
ui32Value = -(int32_t)ui32Value;
//
// Indicate that the value is negative.
//
ui32Neg = 1;
}
else
{
//
// Indicate that the value is positive so that a minus
// sign isn't inserted.
//
ui32Neg = 0;
}
//
// Set the base to 10.
//
ui32Base = 10;
//
// Convert the value to ASCII.
//
goto convert;
}
//
// Handle the %s command.
//
case 's':
{
//
// Get the string pointer from the varargs.
//
pcStr = va_arg(vaArgP, char *);
//
// Determine the length of the string.
//
for(ui32Idx = 0; pcStr[ui32Idx] != '\0'; ui32Idx++)
{
}
//
// Write the string.
//
UARTwrite(pcStr, ui32Idx);
//
// Write any required padding spaces
//
if(ui32Count > ui32Idx)
{
ui32Count -= ui32Idx;
while(ui32Count--)
{
UARTwrite(" ", 1);
}
}
//
// This command has been handled.
//
break;
}
//
// Handle the %u command.
//
case 'u':
{
//
// Get the value from the varargs.
//
ui32Value = va_arg(vaArgP, uint32_t);
//
// Reset the buffer position.
//
ui32Pos = 0;
//
// Set the base to 10.
//
ui32Base = 10;
//
// Indicate that the value is positive so that a minus sign
// isn't inserted.
//
ui32Neg = 0;
//
// Convert the value to ASCII.
//
goto convert;
}
//
// Handle the %x and %X commands. Note that they are treated
// identically; in other words, %X will use lower case letters
// for a-f instead of the upper case letters it should use. We
// also alias %p to %x.
//
case 'x':
case 'X':
case 'p':
{
//
// Get the value from the varargs.
//
ui32Value = va_arg(vaArgP, uint32_t);
//
// Reset the buffer position.
//
ui32Pos = 0;
//
// Set the base to 16.
//
ui32Base = 16;
//
// Indicate that the value is positive so that a minus sign
// isn't inserted.
//
ui32Neg = 0;
//
// Determine the number of digits in the string version of
// the value.
//
convert:
for(ui32Idx = 1;
(((ui32Idx * ui32Base) <= ui32Value) &&
(((ui32Idx * ui32Base) / ui32Base) == ui32Idx));
ui32Idx *= ui32Base, ui32Count--)
{
}
//
// If the value is negative, reduce the count of padding
// characters needed.
//
if(ui32Neg)
{
ui32Count--;
}
//
// If the value is negative and the value is padded with
// zeros, then place the minus sign before the padding.
//
if(ui32Neg && (cFill == '0'))
{
//
// Place the minus sign in the output buffer.
//
pcBuf[ui32Pos++] = '-';
//
// The minus sign has been placed, so turn off the
// negative flag.
//
ui32Neg = 0;
}
//
// Provide additional padding at the beginning of the
// string conversion if needed.
//
if((ui32Count > 1) && (ui32Count < 16))
{
for(ui32Count--; ui32Count; ui32Count--)
{
pcBuf[ui32Pos++] = cFill;
}
}
//
// If the value is negative, then place the minus sign
// before the number.
//
if(ui32Neg)
{
//
// Place the minus sign in the output buffer.
//
pcBuf[ui32Pos++] = '-';
}
//
// Convert the value into a string.
//
for(; ui32Idx; ui32Idx /= ui32Base)
{
pcBuf[ui32Pos++] =
g_pcHex[(ui32Value / ui32Idx) % ui32Base];
}
//
// Write the string.
//
UARTwrite(pcBuf, ui32Pos);
//
// This command has been handled.
//
break;
}
//
// Handle the %% command.
//
case '%':
{
//
// Simply write a single %.
//
UARTwrite(pcString - 1, 1);
//
// This command has been handled.
//
break;
}
//
// Handle all other commands.
//
default:
{
//
// Indicate an error.
//
UARTwrite("ERROR", 5);
//
// This command has been handled.
//
break;
}
}
}
}
}
//*****************************************************************************
//
//! A simple UART based printf function supporting \%c, \%d, \%p, \%s, \%u,
//! \%x, and \%X.
//!
//! \param pcString is the format string.
//! \param ... are the optional arguments, which depend on the contents of the
//! format string.
//!
//! This function is very similar to the C library <tt>fprintf()</tt> function.
//! All of its output will be sent to the UART. Only the following formatting
//! characters are supported:
//!
//! - \%c to print a character
//! - \%d or \%i to print a decimal value
//! - \%s to print a string
//! - \%u to print an unsigned decimal value
//! - \%x to print a hexadecimal value using lower case letters
//! - \%X to print a hexadecimal value using lower case letters (not upper case
//! letters as would typically be used)
//! - \%p to print a pointer as a hexadecimal value
//! - \%\% to print out a \% character
//!
//! For \%s, \%d, \%i, \%u, \%p, \%x, and \%X, an optional number may reside
//! between the \% and the format character, which specifies the minimum number
//! of characters to use for that value; if preceded by a 0 then the extra
//! characters will be filled with zeros instead of spaces. For example,
//! ``\%8d'' will use eight characters to print the decimal value with spaces
//! added to reach eight; ``\%08d'' will use eight characters as well but will
//! add zeroes instead of spaces.
//!
//! The type of the arguments after \e pcString must match the requirements of
//! the format string. For example, if an integer was passed where a string
//! was expected, an error of some kind will most likely occur.
//!
//! \return None.
//
//*****************************************************************************
void
UARTprintf(const char *pcString, ...)
{
va_list vaArgP;
//
// Start the varargs processing.
//
va_start(vaArgP, pcString);
UARTvprintf(pcString, vaArgP);
//
// We're finished with the varargs now.
//
va_end(vaArgP);
}
//*****************************************************************************
//
//! Returns the number of bytes available in the receive buffer.
//!
//! This function, available only when the module is built to operate in
//! buffered mode using \b UART_BUFFERED, may be used to determine the number
//! of bytes of data currently available in the receive buffer.
//!
//! \return Returns the number of available bytes.
//
//*****************************************************************************
#if defined(UART_BUFFERED) || defined(DOXYGEN)
int
UARTRxBytesAvail(void)
{
return(RX_BUFFER_USED);
}
#endif
#if defined(UART_BUFFERED) || defined(DOXYGEN)
//*****************************************************************************
//
//! Returns the number of bytes free in the transmit buffer.
//!
//! This function, available only when the module is built to operate in
//! buffered mode using \b UART_BUFFERED, may be used to determine the amount
//! of space currently available in the transmit buffer.
//!
//! \return Returns the number of free bytes.
//
//*****************************************************************************
int
UARTTxBytesFree(void)
{
return(TX_BUFFER_FREE);
}
#endif
//*****************************************************************************
//
//! Looks ahead in the receive buffer for a particular character.
//!
//! \param ucChar is the character that is to be searched for.
//!
//! This function, available only when the module is built to operate in
//! buffered mode using \b UART_BUFFERED, may be used to look ahead in the
//! receive buffer for a particular character and report its position if found.
//! It is typically used to determine whether a complete line of user input is
//! available, in which case ucChar should be set to CR ('\\r') which is used
//! as the line end marker in the receive buffer.
//!
//! \return Returns -1 to indicate that the requested character does not exist
//! in the receive buffer. Returns a non-negative number if the character was
//! found in which case the value represents the position of the first instance
//! of \e ucChar relative to the receive buffer read pointer.
//
//*****************************************************************************
#if defined(UART_BUFFERED) || defined(DOXYGEN)
int
UARTPeek(unsigned char ucChar)
{
int iCount;
int iAvail;
uint32_t ui32ReadIndex;
//
// How many characters are there in the receive buffer?
//
iAvail = (int)RX_BUFFER_USED;
ui32ReadIndex = g_ui32UARTRxReadIndex;
//
// Check all the unread characters looking for the one passed.
//
for(iCount = 0; iCount < iAvail; iCount++)
{
if(g_pcUARTRxBuffer[ui32ReadIndex] == ucChar)
{
//
// We found it so return the index
//
return(iCount);
}
else
{
//
// This one didn't match so move on to the next character.
//
ADVANCE_RX_BUFFER_INDEX(ui32ReadIndex);
}
}
//
// If we drop out of the loop, we didn't find the character in the receive
// buffer.
//
return(-1);
}
#endif
//*****************************************************************************
//
//! Flushes the receive buffer.
//!
//! This function, available only when the module is built to operate in
//! buffered mode using \b UART_BUFFERED, may be used to discard any data
//! received from the UART but not yet read using UARTgets().
//!
//! \return None.
//
//*****************************************************************************
#if defined(UART_BUFFERED) || defined(DOXYGEN)
void
UARTFlushRx(void)
{
uint32_t ui32Int;
//
// Temporarily turn off interrupts.
//
ui32Int = MAP_IntMasterDisable();
//
// Flush the receive buffer.
//
g_ui32UARTRxReadIndex = 0;
g_ui32UARTRxWriteIndex = 0;
//
// If interrupts were enabled when we turned them off, turn them
// back on again.
//
if(!ui32Int)
{
MAP_IntMasterEnable();
}
}
#endif
//*****************************************************************************
//
//! Flushes the transmit buffer.
//!
//! \param bDiscard indicates whether any remaining data in the buffer should
//! be discarded (\b true) or transmitted (\b false).
//!
//! This function, available only when the module is built to operate in
//! buffered mode using \b UART_BUFFERED, may be used to flush the transmit
//! buffer, either discarding or transmitting any data received via calls to
//! UARTprintf() that is waiting to be transmitted. On return, the transmit
//! buffer will be empty.
//!
//! \return None.
//
//*****************************************************************************
#if defined(UART_BUFFERED) || defined(DOXYGEN)
void
UARTFlushTx(bool bDiscard)
{
uint32_t ui32Int;
//
// Should the remaining data be discarded or transmitted?
//
if(bDiscard)
{
//
// The remaining data should be discarded, so temporarily turn off
// interrupts.
//
ui32Int = MAP_IntMasterDisable();
//
// Flush the transmit buffer.
//
g_ui32UARTTxReadIndex = 0;
g_ui32UARTTxWriteIndex = 0;
//
// If interrupts were enabled when we turned them off, turn them
// back on again.
//
if(!ui32Int)
{
MAP_IntMasterEnable();
}
}
else
{
//
// Wait for all remaining data to be transmitted before returning.
//
while(!TX_BUFFER_EMPTY)
{
}
}
}
#endif
//*****************************************************************************
//
//! Enables or disables echoing of received characters to the transmitter.
//!
//! \param bEnable must be set to \b true to enable echo or \b false to
//! disable it.
//!
//! This function, available only when the module is built to operate in
//! buffered mode using \b UART_BUFFERED, may be used to control whether or not
//! received characters are automatically echoed back to the transmitter. By
//! default, echo is enabled and this is typically the desired behavior if
//! the module is being used to support a serial command line. In applications
//! where this module is being used to provide a convenient, buffered serial
//! interface over which application-specific binary protocols are being run,
//! however, echo may be undesirable and this function can be used to disable
//! it.
//!
//! \return None.
//
//*****************************************************************************
#if defined(UART_BUFFERED) || defined(DOXYGEN)
void
UARTEchoSet(bool bEnable)
{
g_bDisableEcho = !bEnable;
}
#endif
//*****************************************************************************
//
//! Handles UART interrupts.
//!
//! This function handles interrupts from the UART. It will copy data from the
//! transmit buffer to the UART transmit FIFO if space is available, and it
//! will copy data from the UART receive FIFO to the receive buffer if data is
//! available.
//!
//! \return None.
//
//*****************************************************************************
#if defined(UART_BUFFERED) || defined(DOXYGEN)
void
UARTStdioIntHandler(void)
{
uint32_t ui32Ints;
int8_t cChar;
int32_t i32Char;
static bool bLastWasCR = false;
//
// Get and clear the current interrupt source(s)
//
ui32Ints = MAP_UARTIntStatus(g_ui32Base, true);
MAP_UARTIntClear(g_ui32Base, ui32Ints);
//
// Are we being interrupted because the TX FIFO has space available?
//
if(ui32Ints & UART_INT_TX)
{
//
// Move as many bytes as we can into the transmit FIFO.
//
UARTPrimeTransmit(g_ui32Base);
//
// If the output buffer is empty, turn off the transmit interrupt.
//
if(TX_BUFFER_EMPTY)
{
MAP_UARTIntDisable(g_ui32Base, UART_INT_TX);
}
}
//
// Are we being interrupted due to a received character?
//
if(ui32Ints & (UART_INT_RX | UART_INT_RT))
{
//
// Get all the available characters from the UART.
//
while(MAP_UARTCharsAvail(g_ui32Base))
{
//
// Read a character
//
i32Char = MAP_UARTCharGetNonBlocking(g_ui32Base);
cChar = (unsigned char)(i32Char & 0xFF);
//
// If echo is disabled, we skip the various text filtering
// operations that would typically be required when supporting a
// command line.
//
if(!g_bDisableEcho)
{
//
// Handle backspace by erasing the last character in the
// buffer.
//
if(cChar == '\b')
{
//
// If there are any characters already in the buffer, then
// delete the last.
//
if(!RX_BUFFER_EMPTY)
{
//
// Rub out the previous character on the users
// terminal.
//
UARTwrite("\b \b", 3);
//
// Decrement the number of characters in the buffer.
//
if(g_ui32UARTRxWriteIndex == 0)
{
g_ui32UARTRxWriteIndex = UART_RX_BUFFER_SIZE - 1;
}
else
{
g_ui32UARTRxWriteIndex--;
}
}
//
// Skip ahead to read the next character.
//
continue;
}
//
// If this character is LF and last was CR, then just gobble up
// the character since we already echoed the previous CR and we
// don't want to store 2 characters in the buffer if we don't
// need to.
//
if((cChar == '\n') && bLastWasCR)
{
bLastWasCR = false;
continue;
}
//
// See if a newline or escape character was received.
//
if((cChar == '\r') || (cChar == '\n') || (cChar == 0x1b))
{
//
// If the character is a CR, then it may be followed by an
// LF which should be paired with the CR. So remember that
// a CR was received.
//
if(cChar == '\r')
{
bLastWasCR = 1;
}
//
// Regardless of the line termination character received,
// put a CR in the receive buffer as a marker telling
// UARTgets() where the line ends. We also send an
// additional LF to ensure that the local terminal echo
// receives both CR and LF.
//
cChar = '\r';
UARTwrite("\n", 1);
}
}
//
// If there is space in the receive buffer, put the character
// there, otherwise throw it away.
//
if(!RX_BUFFER_FULL)
{
//
// Store the new character in the receive buffer
//
g_pcUARTRxBuffer[g_ui32UARTRxWriteIndex] =
(unsigned char)(i32Char & 0xFF);
ADVANCE_RX_BUFFER_INDEX(g_ui32UARTRxWriteIndex);
//
// If echo is enabled, write the character to the transmit
// buffer so that the user gets some immediate feedback.
//
if(!g_bDisableEcho)
{
UARTwrite((const char *)&cChar, 1);
}
}
}
//
// If we wrote anything to the transmit buffer, make sure it actually
// gets transmitted.
//
UARTPrimeTransmit(g_ui32Base);
MAP_UARTIntEnable(g_ui32Base, UART_INT_TX);
}
}
#endif
//*****************************************************************************
//
// Close the Doxygen group.
//! @}
//
//*****************************************************************************
//
// End of file
//