552 lines
22 KiB
C
552 lines
22 KiB
C
/*
|
||
* File : spi_flash_sfud.c
|
||
* This file is part of RT-Thread RTOS
|
||
* COPYRIGHT (C) 2006 - 2016, RT-Thread Development Team
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License along
|
||
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
|
||
*
|
||
* Change Logs:
|
||
* Date Author Notes
|
||
* 2016-09-28 armink first version.
|
||
*/
|
||
|
||
#include <stdint.h>
|
||
#include <rtdevice.h>
|
||
#include "spi_flash.h"
|
||
#include "spi_flash_sfud.h"
|
||
|
||
#ifdef RT_USING_SFUD
|
||
|
||
#if RT_DEBUG_SFUD
|
||
#define SFUD_TRACE rt_kprintf
|
||
#else
|
||
#define SFUD_TRACE(...)
|
||
#endif /* RT_DEBUG_SFUD */
|
||
|
||
#ifndef RT_SFUD_DEFAULT_SPI_CFG
|
||
/* read the JEDEC SFDP command must run at 50 MHz or less */
|
||
#define RT_SFUD_DEFAULT_SPI_CFG \
|
||
{ \
|
||
.mode = RT_SPI_MODE_0 | RT_SPI_MSB, \
|
||
.data_width = 8, \
|
||
.max_hz = 50 * 1000 * 1000, \
|
||
}
|
||
#endif
|
||
|
||
static char log_buf[RT_CONSOLEBUF_SIZE];
|
||
|
||
void sfud_log_debug(const char *file, const long line, const char *format, ...);
|
||
|
||
static rt_err_t rt_sfud_control(rt_device_t dev, rt_uint8_t cmd, void *args) {
|
||
RT_ASSERT(dev != RT_NULL);
|
||
|
||
switch (cmd) {
|
||
case RT_DEVICE_CTRL_BLK_GETGEOME: {
|
||
struct rt_device_blk_geometry *geometry = (struct rt_device_blk_geometry *) args;
|
||
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
|
||
|
||
if (rtt_dev == RT_NULL || geometry == RT_NULL) {
|
||
return -RT_ERROR;
|
||
}
|
||
|
||
geometry->bytes_per_sector = rtt_dev->geometry.bytes_per_sector;
|
||
geometry->sector_count = rtt_dev->geometry.sector_count;
|
||
geometry->block_size = rtt_dev->geometry.block_size;
|
||
break;
|
||
}
|
||
case RT_DEVICE_CTRL_BLK_ERASE: {
|
||
rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr;
|
||
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
|
||
sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
|
||
rt_size_t phy_size;
|
||
|
||
if (addrs == RT_NULL || start_addr > end_addr || rtt_dev == RT_NULL || sfud_dev == RT_NULL) {
|
||
return -RT_ERROR;
|
||
}
|
||
|
||
phy_start_addr = start_addr * rtt_dev->geometry.bytes_per_sector;
|
||
phy_size = (end_addr - start_addr) * rtt_dev->geometry.bytes_per_sector;
|
||
|
||
if (sfud_erase(sfud_dev, phy_start_addr, phy_size) != SFUD_SUCCESS) {
|
||
return -RT_ERROR;
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
return RT_EOK;
|
||
}
|
||
|
||
|
||
static rt_size_t rt_sfud_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) {
|
||
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
|
||
sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
|
||
/* change the block device<63><65>s logic address to physical address */
|
||
rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
|
||
rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
|
||
|
||
if (sfud_read(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
|
||
return 0;
|
||
} else {
|
||
return size;
|
||
}
|
||
}
|
||
|
||
static rt_size_t rt_sfud_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) {
|
||
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (dev->user_data);
|
||
sfud_flash *sfud_dev = (sfud_flash *) (rtt_dev->user_data);
|
||
/* change the block device<63><65>s logic address to physical address */
|
||
rt_off_t phy_pos = pos * rtt_dev->geometry.bytes_per_sector;
|
||
rt_size_t phy_size = size * rtt_dev->geometry.bytes_per_sector;
|
||
|
||
if (sfud_erase_write(sfud_dev, phy_pos, phy_size, buffer) != SFUD_SUCCESS) {
|
||
return 0;
|
||
} else {
|
||
return size;
|
||
}
|
||
}
|
||
|
||
/**
|
||
* SPI write data then read data
|
||
*/
|
||
static sfud_err spi_write_read(const sfud_spi *spi, const uint8_t *write_buf, size_t write_size, uint8_t *read_buf,
|
||
size_t read_size) {
|
||
sfud_err result = SFUD_SUCCESS;
|
||
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
|
||
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
|
||
|
||
if (write_size) {
|
||
RT_ASSERT(write_buf);
|
||
}
|
||
if (read_size) {
|
||
RT_ASSERT(read_buf);
|
||
}
|
||
|
||
if (write_size && read_size) {
|
||
if (rt_spi_send_then_recv(rtt_dev->rt_spi_device, write_buf, write_size, read_buf, read_size) != RT_EOK) {
|
||
result = SFUD_ERR_TIMEOUT;
|
||
}
|
||
} else if (write_size) {
|
||
if (rt_spi_send(rtt_dev->rt_spi_device, write_buf, write_size) == 0) {
|
||
result = SFUD_ERR_TIMEOUT;
|
||
}
|
||
} else {
|
||
if (rt_spi_recv(rtt_dev->rt_spi_device, read_buf, read_size) == 0) {
|
||
result = SFUD_ERR_TIMEOUT;
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
static void spi_lock(const sfud_spi *spi) {
|
||
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
|
||
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
|
||
|
||
rt_mutex_take(&(rtt_dev->lock), RT_WAITING_FOREVER);
|
||
}
|
||
|
||
static void spi_unlock(const sfud_spi *spi) {
|
||
sfud_flash *sfud_dev = (sfud_flash *) (spi->user_data);
|
||
struct spi_flash_device *rtt_dev = (struct spi_flash_device *) (sfud_dev->user_data);
|
||
|
||
rt_mutex_release(&(rtt_dev->lock));
|
||
}
|
||
|
||
static void retry_delay_ms(void) {
|
||
/* millisecond delay */
|
||
rt_tick_from_millisecond(1);
|
||
}
|
||
|
||
static void retry_delay_100us(void) {
|
||
/* 100 microsecond delay */
|
||
rt_thread_delay((RT_TICK_PER_SECOND * 1 + 9999) / 10000);
|
||
}
|
||
|
||
/**
|
||
* This function is print debug info.
|
||
*
|
||
* @param file the file which has call this function
|
||
* @param line the line number which has call this function
|
||
* @param format output format
|
||
* @param ... args
|
||
*/
|
||
void sfud_log_debug(const char *file, const long line, const char *format, ...) {
|
||
va_list args;
|
||
|
||
/* args point to the first variable parameter */
|
||
va_start(args, format);
|
||
rt_kprintf("[SFUD](%s:%ld) ", file, line);
|
||
/* must use vprintf to print */
|
||
vsnprintf(log_buf, sizeof(log_buf), format, args);
|
||
rt_kprintf("%s\n", log_buf);
|
||
va_end(args);
|
||
}
|
||
|
||
/**
|
||
* This function is print routine info.
|
||
*
|
||
* @param format output format
|
||
* @param ... args
|
||
*/
|
||
void sfud_log_info(const char *format, ...) {
|
||
va_list args;
|
||
|
||
/* args point to the first variable parameter */
|
||
va_start(args, format);
|
||
rt_kprintf("[SFUD]");
|
||
/* must use vprintf to print */
|
||
vsnprintf(log_buf, sizeof(log_buf), format, args);
|
||
rt_kprintf("%s\n", log_buf);
|
||
va_end(args);
|
||
}
|
||
|
||
sfud_err sfud_spi_port_init(sfud_flash *flash) {
|
||
sfud_err result = SFUD_SUCCESS;
|
||
|
||
/* port SPI device interface */
|
||
flash->spi.wr = spi_write_read;
|
||
flash->spi.lock = spi_lock;
|
||
flash->spi.unlock = spi_unlock;
|
||
flash->spi.user_data = flash;
|
||
/* 100 microsecond delay */
|
||
flash->retry.delay = retry_delay_100us;
|
||
/* 60 seconds timeout */
|
||
flash->retry.times = 60 * 10000;
|
||
|
||
|
||
return result;
|
||
}
|
||
|
||
/**
|
||
* SPI Flash device initialize by SFUD(Serial Flash Universal Driver) library
|
||
*
|
||
* @param rtt_dev the static RT-Thread's flash device object
|
||
* @param sfud_dev the static SFUD's flash device object
|
||
*
|
||
* @return result
|
||
*/
|
||
rt_err_t rt_sfud_init(struct spi_flash_device *rtt_dev, sfud_flash *sfud_dev) {
|
||
extern sfud_err sfud_device_init(sfud_flash *flash);
|
||
|
||
RT_ASSERT(rtt_dev);
|
||
RT_ASSERT(sfud_dev);
|
||
|
||
rt_memset(rtt_dev, 0, sizeof(struct spi_flash_device));
|
||
|
||
/* SPI configure */
|
||
{
|
||
/* RT-Thread SPI device initialize */
|
||
rtt_dev->rt_spi_device = (struct rt_spi_device *) rt_device_find(sfud_dev->spi.name);
|
||
if (rtt_dev->rt_spi_device == RT_NULL) {
|
||
SFUD_TRACE("spi device %s not found!\r\n", sfud_dev->spi.name);
|
||
return -RT_ENOSYS;
|
||
}
|
||
/* using default flash SPI configuration for initialize SPI Flash
|
||
* @note you also can change the SPI to other configuration after initialized finish */
|
||
struct rt_spi_configuration cfg = RT_SFUD_DEFAULT_SPI_CFG;
|
||
rt_spi_configure(rtt_dev->rt_spi_device, &cfg);
|
||
/* initialize lock */
|
||
rt_mutex_init(&(rtt_dev->lock), sfud_dev->name, RT_IPC_FLAG_FIFO);
|
||
}
|
||
|
||
|
||
/* SFUD flash device initialize */
|
||
{
|
||
/* accessed each other */
|
||
rtt_dev->user_data = sfud_dev;
|
||
rtt_dev->flash_device.user_data = rtt_dev;
|
||
sfud_dev->user_data = rtt_dev;
|
||
/* initialize SFUD device */
|
||
if (sfud_device_init(sfud_dev) != SFUD_SUCCESS) {
|
||
return -RT_EIO;
|
||
}
|
||
/* when initialize success, then copy SFUD flash device's geometry to RT-Thread SPI flash device */
|
||
rtt_dev->geometry.sector_count = sfud_dev->chip.capacity / sfud_dev->chip.erase_gran;
|
||
rtt_dev->geometry.bytes_per_sector = sfud_dev->chip.erase_gran;
|
||
rtt_dev->geometry.block_size = sfud_dev->chip.erase_gran;
|
||
}
|
||
|
||
/* register device */
|
||
rtt_dev->flash_device.type = RT_Device_Class_Block;
|
||
rtt_dev->flash_device.init = RT_NULL;
|
||
rtt_dev->flash_device.open = RT_NULL;
|
||
rtt_dev->flash_device.close = RT_NULL;
|
||
rtt_dev->flash_device.read = rt_sfud_read;
|
||
rtt_dev->flash_device.write = rt_sfud_write;
|
||
rtt_dev->flash_device.control = rt_sfud_control;
|
||
|
||
rt_device_register(&(rtt_dev->flash_device), sfud_dev->name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE);
|
||
|
||
return RT_EOK;
|
||
}
|
||
|
||
#if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH)
|
||
|
||
#include <finsh.h>
|
||
|
||
static void sf(uint8_t argc, char **argv) {
|
||
|
||
#define CMD_SETECT_INDEX 0
|
||
#define CMD_READ_INDEX 1
|
||
#define CMD_WRITE_INDEX 2
|
||
#define CMD_ERASE_INDEX 3
|
||
#define CMD_RW_STATUS_INDEX 4
|
||
#define CMD_BENCH_INDEX 5
|
||
|
||
sfud_err result = SFUD_SUCCESS;
|
||
const static sfud_flash *flash = NULL;
|
||
size_t i = 0;
|
||
|
||
const char* sf_help_info[] = {
|
||
[CMD_SETECT_INDEX] = "sf select [index] - select a flash chip with device's index",
|
||
[CMD_READ_INDEX] = "sf read addr size - read 'size' bytes starting at 'addr'",
|
||
[CMD_WRITE_INDEX] = "sf write addr data1 ... dataN - write some bytes 'data' to flash starting at 'addr'",
|
||
[CMD_ERASE_INDEX] = "sf erase addr size - erase 'size' bytes starting at 'addr'",
|
||
[CMD_RW_STATUS_INDEX] = "sf status [<volatile> <status>] - read or write '1:volatile|0:non-volatile' 'status'",
|
||
[CMD_BENCH_INDEX] = "sf bench - full chip benchmark. DANGER: it will erase full chip!",
|
||
};
|
||
|
||
if (argc < 2) {
|
||
rt_kprintf("Usage:\n");
|
||
for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
|
||
rt_kprintf("%s\n", sf_help_info[i]);
|
||
}
|
||
rt_kprintf("\n");
|
||
} else {
|
||
const char *operator = argv[1];
|
||
uint32_t addr, size;
|
||
|
||
if (!strcmp(operator, "select")) {
|
||
if (argc < 3) {
|
||
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_SETECT_INDEX]);
|
||
if (sfud_get_device_num() > 0) {
|
||
for (i = 0; i < sfud_get_device_num(); i++) {
|
||
if (sfud_get_device(i)->init_ok) {
|
||
rt_kprintf("The index %d flash device name is %s, ", i, sfud_get_device(i)->name);
|
||
if (sfud_get_device(i)->chip.capacity < 1024 * 1024) {
|
||
rt_kprintf("total is %d KB", sfud_get_device(i)->chip.capacity / 1024);
|
||
} else {
|
||
rt_kprintf("total is %d MB", sfud_get_device(i)->chip.capacity / 1024 / 1024);
|
||
}
|
||
if (sfud_get_device(i)->chip.name != NULL) {
|
||
rt_kprintf(", type is %s", sfud_get_device(i)->chip.name);
|
||
}
|
||
rt_kprintf(".\n");
|
||
}
|
||
}
|
||
} else {
|
||
rt_kprintf("There is no flash device in device table.\n");
|
||
}
|
||
} else {
|
||
size_t device_index = atol(argv[2]);
|
||
if (device_index >= sfud_get_device_num()) {
|
||
rt_kprintf("Flash device index out bound[0:%d].\n", sfud_get_device_num() - 1);
|
||
return;
|
||
}
|
||
if (!sfud_get_device(device_index)->init_ok) {
|
||
rt_kprintf("Flash %s isn't initialize OK.\n", sfud_get_device(device_index)->name);
|
||
return;
|
||
}
|
||
flash = sfud_get_device(device_index);
|
||
if (flash->chip.capacity < 1024 * 1024) {
|
||
rt_kprintf("%d KB %s is current selected device.\n", flash->chip.capacity / 1024, flash->name);
|
||
} else {
|
||
rt_kprintf("%d MB %s is current selected device.\n", flash->chip.capacity / 1024 / 1024,
|
||
flash->name);
|
||
}
|
||
}
|
||
} else {
|
||
if (!flash) {
|
||
rt_kprintf("No flash device selected. Please run 'sf select'.\n");
|
||
return;
|
||
}
|
||
if (!rt_strcmp(operator, "read")) {
|
||
if (argc < 4) {
|
||
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_READ_INDEX]);
|
||
return;
|
||
} else {
|
||
addr = atol(argv[2]);
|
||
size = atol(argv[3]);
|
||
uint8_t *data = rt_malloc(size);
|
||
if (data) {
|
||
result = sfud_read(flash, addr, size, data);
|
||
if (result == SFUD_SUCCESS) {
|
||
rt_kprintf("Read the %s flash data success. Start from 0x%08X, size is %ld. The data is:\n",
|
||
flash->name, addr, size);
|
||
rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n");
|
||
for (i = 0; i < size; i++) {
|
||
if (i % 16 == 0) {
|
||
rt_kprintf("[%08X] ", addr + i);
|
||
}
|
||
rt_kprintf("%02X ", data[i]);
|
||
if (((i + 1) % 16 == 0) || i == size - 1) {
|
||
rt_kprintf("\n");
|
||
}
|
||
}
|
||
rt_kprintf("\n");
|
||
}
|
||
rt_free(data);
|
||
} else {
|
||
rt_kprintf("Low memory!\n");
|
||
}
|
||
}
|
||
} else if (!rt_strcmp(operator, "write")) {
|
||
if (argc < 4) {
|
||
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_WRITE_INDEX]);
|
||
return;
|
||
} else {
|
||
addr = atol(argv[2]);
|
||
size = argc - 3;
|
||
uint8_t *data = rt_malloc(size);
|
||
if (data) {
|
||
for (i = 0; i < size; i++) {
|
||
data[i] = atoi(argv[3 + i]);
|
||
}
|
||
result = sfud_write(flash, addr, size, data);
|
||
if (result == SFUD_SUCCESS) {
|
||
rt_kprintf("Write the %s flash data success. Start from 0x%08X, size is %ld.\n",
|
||
flash->name, addr, size);
|
||
rt_kprintf("Write data: ");
|
||
for (i = 0; i < size; i++) {
|
||
rt_kprintf("%d ", data[i]);
|
||
}
|
||
rt_kprintf(".\n");
|
||
}
|
||
rt_free(data);
|
||
} else {
|
||
rt_kprintf("Low memory!\n");
|
||
}
|
||
}
|
||
} else if (!rt_strcmp(operator, "erase")) {
|
||
if (argc < 4) {
|
||
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_ERASE_INDEX]);
|
||
return;
|
||
} else {
|
||
addr = atol(argv[2]);
|
||
size = atol(argv[3]);
|
||
result = sfud_erase(flash, addr, size);
|
||
if (result == SFUD_SUCCESS) {
|
||
rt_kprintf("Erase the %s flash data success. Start from 0x%08X, size is %ld.\n", flash->name,
|
||
addr, size);
|
||
}
|
||
}
|
||
} else if (!rt_strcmp(operator, "status")) {
|
||
if (argc < 3) {
|
||
uint8_t status;
|
||
result = sfud_read_status(flash, &status);
|
||
if (result == SFUD_SUCCESS) {
|
||
rt_kprintf("The %s flash status register current value is 0x%02X.\n", flash->name, status);
|
||
}
|
||
} else if (argc == 4) {
|
||
bool is_volatile = atoi(argv[2]);
|
||
uint8_t status = atoi(argv[3]);
|
||
result = sfud_write_status(flash, is_volatile, status);
|
||
if (result == SFUD_SUCCESS) {
|
||
rt_kprintf("Write the %s flash status register to 0x%02X success.\n", flash->name, status);
|
||
}
|
||
} else {
|
||
rt_kprintf("Usage: %s.\n", sf_help_info[CMD_RW_STATUS_INDEX]);
|
||
return;
|
||
}
|
||
} else if (!rt_strcmp(operator, "bench")) {
|
||
/* full chip benchmark test */
|
||
addr = 0;
|
||
size = flash->chip.capacity;
|
||
uint32_t start_time, time_cast;
|
||
rt_uint32_t total_mem, used_mem, max_uesd_mem;
|
||
rt_memory_info(&total_mem, &used_mem, &max_uesd_mem);
|
||
size_t write_size = SFUD_WRITE_MAX_PAGE_SIZE, read_size;
|
||
if ((total_mem - used_mem) / 2 < size) {
|
||
read_size = (total_mem - used_mem) / 2;
|
||
} else {
|
||
read_size = size;
|
||
}
|
||
uint8_t *write_data = rt_malloc(write_size), *read_data = rt_malloc(read_size);
|
||
|
||
if (write_data && read_data) {
|
||
rt_memset(write_data, 0x55, write_size);
|
||
/* benchmark testing */
|
||
rt_kprintf("Erasing the %s %ld bytes data, waiting...\n", flash->name, size);
|
||
start_time = rt_tick_get();
|
||
result = sfud_erase(flash, addr, size);
|
||
if (result == SFUD_SUCCESS) {
|
||
time_cast = rt_tick_get() - start_time;
|
||
rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
|
||
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
|
||
} else {
|
||
rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result);
|
||
}
|
||
/* write test */
|
||
rt_kprintf("Writing the %s %ld bytes data, waiting...\n", flash->name, size);
|
||
start_time = rt_tick_get();
|
||
for (i = 0; i < size; i += write_size) {
|
||
result = sfud_write(flash, addr + i, write_size, write_data);
|
||
if (result != SFUD_SUCCESS) {
|
||
break;
|
||
}
|
||
}
|
||
if (result == SFUD_SUCCESS) {
|
||
time_cast = rt_tick_get() - start_time;
|
||
rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
|
||
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
|
||
} else {
|
||
rt_kprintf("Write benchmark has an error. Error code: %d.\n", result);
|
||
}
|
||
/* read test */
|
||
rt_kprintf("Reading the %s %ld bytes data, waiting...\n", flash->name, size);
|
||
start_time = rt_tick_get();
|
||
for (i = 0; i < size; i += read_size) {
|
||
if (i + read_size <= size) {
|
||
result = sfud_read(flash, addr + i, read_size, read_data);
|
||
} else {
|
||
result = sfud_read(flash, addr + i, size - i, read_data);
|
||
}
|
||
if (result != SFUD_SUCCESS) {
|
||
break;
|
||
}
|
||
}
|
||
if (result == SFUD_SUCCESS) {
|
||
time_cast = rt_tick_get() - start_time;
|
||
rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND,
|
||
time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000));
|
||
} else {
|
||
rt_kprintf("Read benchmark has an error. Error code: %d.\n", result);
|
||
}
|
||
} else {
|
||
rt_kprintf("Low memory!\n");
|
||
}
|
||
rt_free(write_data);
|
||
rt_free(read_data);
|
||
} else {
|
||
rt_kprintf("Usage:\n");
|
||
for (i = 0; i < sizeof(sf_help_info) / sizeof(char*); i++) {
|
||
rt_kprintf("%s\n", sf_help_info[i]);
|
||
}
|
||
rt_kprintf("\n");
|
||
return;
|
||
}
|
||
if (result != SFUD_SUCCESS) {
|
||
rt_kprintf("This flash operate has an error. Error code: %d.\n", result);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
MSH_CMD_EXPORT(sf, SPI Flash operate.);
|
||
|
||
#endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */
|
||
|
||
#endif /* RT_USING_SFUD */
|