rt-thread/bsp/apm32/libraries/Drivers/drv_adc.c

431 lines
11 KiB
C

/*
* Copyright (c) 2006-2022, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-03-04 stevetong459 first version
* 2022-07-15 Aligagago add apm32F4 serie MCU support
* 2022-12-26 luobeihai add apm32F0 serie MCU support
*/
#include <board.h>
#if defined(BSP_USING_ADC1) || defined(BSP_USING_ADC2) || defined(BSP_USING_ADC3)
#define DBG_TAG "drv.adc"
#define DBG_LVL DBG_INFO
#include <rtdbg.h>
#define DRV_ADC_CHANNEL_MAX_NUM 16
#define DRV_ADC_TIME_OUT 0xFFF
#define APM32_ADC_GET_PORT(pin_num) ((GPIO_T *)(GPIOA_BASE + (0x400u * (((pin_num) >> 4) & 0xFu))))
#define APM32_ADC_GET_PIN(pin_num) ((uint16_t)(1u << ((pin_num) & 0xFu)))
struct apm32_adc
{
const char *name;
ADC_T *adc;
ADC_Config_T adc_config;
rt_base_t channel_pin[DRV_ADC_CHANNEL_MAX_NUM];
struct rt_adc_device adc_dev;
};
#if defined(SOC_SERIES_APM32F1)
static struct apm32_adc adc_config[] =
{
#ifdef BSP_USING_ADC1
{
"adc1",
ADC1,
{
ADC_MODE_INDEPENDENT,
DISABLE,
DISABLE,
ADC_EXT_TRIG_CONV_None,
ADC_DATA_ALIGN_RIGHT,
1
},
{
GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
},
RT_NULL
},
#endif
#ifdef BSP_USING_ADC2
{
"adc2",
ADC2,
{
ADC_MODE_INDEPENDENT,
DISABLE,
DISABLE,
ADC_EXT_TRIG_CONV_None,
ADC_DATA_ALIGN_RIGHT,
1
},
{
GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
},
RT_NULL
},
#endif
#ifdef BSP_USING_ADC3
{
"adc3",
ADC3,
{
ADC_MODE_INDEPENDENT,
DISABLE,
DISABLE,
ADC_EXT_TRIG_CONV_None,
ADC_DATA_ALIGN_RIGHT,
1
},
{
GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(F, 6),
GET_PIN(F, 7), GET_PIN(F, 8), GET_PIN(F, 9), GET_PIN(F, 10)
},
RT_NULL
},
#endif
};
#elif defined(SOC_SERIES_APM32F4)
static struct apm32_adc adc_config[] =
{
#ifdef BSP_USING_ADC1
{
"adc1",
ADC1,
{
ADC_RESOLUTION_12BIT,
DISABLE,
DISABLE,
ADC_EXT_TRIG_EDGE_NONE,
ADC_EXT_TRIG_CONV_TMR1_CC1,
ADC_DATA_ALIGN_RIGHT,
1
},
{
GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
},
RT_NULL
},
#endif
#ifdef BSP_USING_ADC2
{
"adc2",
ADC2,
{
ADC_RESOLUTION_12BIT,
DISABLE,
DISABLE,
ADC_EXT_TRIG_EDGE_NONE,
ADC_EXT_TRIG_CONV_TMR1_CC1,
ADC_DATA_ALIGN_RIGHT,
1
},
{
GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
},
RT_NULL
},
#endif
#ifdef BSP_USING_ADC3
{
"adc3",
ADC3,
{
ADC_RESOLUTION_12BIT,
DISABLE,
DISABLE,
ADC_EXT_TRIG_EDGE_NONE,
ADC_EXT_TRIG_CONV_TMR1_CC1,
ADC_DATA_ALIGN_RIGHT,
1
},
{
GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(F, 6),
GET_PIN(F, 7), GET_PIN(F, 8), GET_PIN(F, 9), GET_PIN(F, 10), GET_PIN(F, 3),
GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3)
},
RT_NULL
},
#endif
};
#elif defined(SOC_SERIES_APM32F0)
static struct apm32_adc adc_config[] =
{
#ifdef BSP_USING_ADC1
{
"adc1",
ADC,
{
ADC_RESOLUTION_12B,
ADC_DATA_ALIGN_RIGHT,
ADC_SCAN_DIR_UPWARD,
ADC_CONVERSION_SINGLE,
ADC_EXT_TRIG_CONV_TRG0,
ADC_EXT_TRIG_EDGE_NONE
},
{
GET_PIN(A, 0), GET_PIN(A, 1), GET_PIN(A, 2), GET_PIN(A, 3), GET_PIN(A, 4),
GET_PIN(A, 5), GET_PIN(A, 6), GET_PIN(A, 7), GET_PIN(B, 0), GET_PIN(B, 1),
GET_PIN(C, 0), GET_PIN(C, 1), GET_PIN(C, 2), GET_PIN(C, 3), GET_PIN(C, 4),
GET_PIN(C, 5)
},
RT_NULL
},
#endif
};
#endif
static rt_err_t apm32_adc_channel_check(struct rt_adc_device *device, rt_uint32_t channel)
{
struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data);
#if defined(SOC_SERIES_APM32F1)
if (adc_cfg->adc == ADC3)
{
if (channel <= 8)
{
return RT_EOK;
}
}
else
{
if (channel <= 13)
{
return RT_EOK;
}
}
#elif defined(SOC_SERIES_APM32F4)
if (channel <= 13)
{
return RT_EOK;
}
#elif defined(SOC_SERIES_APM32F0)
if (channel <= 16)
{
return RT_EOK;
}
#endif
LOG_E("channel %d of %s is not supported.", channel, adc_cfg->name);
return -RT_ERROR;
}
static rt_err_t apm32_adc_gpio_init(struct rt_adc_device *device, rt_uint32_t channel)
{
struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data);
GPIO_Config_T hw_gpio_config;
if (apm32_adc_channel_check(device, channel) != RT_EOK)
{
return -RT_ERROR;
}
#if defined(SOC_SERIES_APM32F1)
RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu));
hw_gpio_config.mode = GPIO_MODE_ANALOG;
#elif defined(SOC_SERIES_APM32F4)
RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu));
hw_gpio_config.mode = GPIO_MODE_AN;
#elif defined(SOC_SERIES_APM32F0)
RCM_EnableAHBPeriphClock(RCM_AHB_PERIPH_GPIOA << ((adc_cfg->channel_pin[channel] >> 4) & 0xFu));
hw_gpio_config.mode = GPIO_MODE_AN;
#endif
hw_gpio_config.pin = APM32_ADC_GET_PIN(adc_cfg->channel_pin[channel]);
GPIO_Config(APM32_ADC_GET_PORT(adc_cfg->channel_pin[channel]), &hw_gpio_config);
return RT_EOK;
}
/**
* @brief This function will control the adc to enable or disable.
*
* @param device is a pointer to adc device.
*
* @param channel is the adc channel.
*
* @param enabled is the status to indicate enable or disable.
*
* @return RT_EOK indicates successful enable or disable adc, other value indicates failed.
*/
static rt_err_t apm32_adc_enabled(struct rt_adc_device *device, rt_uint32_t channel, rt_bool_t enabled)
{
struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data);
RT_ASSERT(device != RT_NULL);
#if defined(SOC_SERIES_APM32F0)
if (enabled)
{
RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC1);
if (apm32_adc_gpio_init(device, channel) != RT_EOK)
{
return -RT_ERROR;
}
ADC_Config(&adc_cfg->adc_config);
ADC_Enable();
}
else
{
ADC_Disable();
}
#else
if (enabled)
{
if (adc_cfg->adc == ADC1)
{
RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC1);
}
else if (adc_cfg->adc == ADC2)
{
RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC2);
}
else
{
RCM_EnableAPB2PeriphClock(RCM_APB2_PERIPH_ADC3);
}
if (apm32_adc_gpio_init(device, channel) != RT_EOK)
{
return -RT_ERROR;
}
ADC_Config(adc_cfg->adc, &adc_cfg->adc_config);
ADC_Enable(adc_cfg->adc);
}
else
{
ADC_Disable(adc_cfg->adc);
}
#endif
return RT_EOK;
}
/**
* @brief This function will get the adc conversion value.
*
* @param device is a pointer to adc device.
*
* @param channel is the adc channel.
*
* @param value is a pointer to the adc conversion value.
*
* @return RT_EOK indicates successful get adc value, other value indicates failed.
*/
static rt_err_t apm32_adc_get_value(struct rt_adc_device *device, rt_uint32_t channel, rt_uint32_t *value)
{
#if !defined(SOC_SERIES_APM32F0)
struct apm32_adc *adc_cfg = ((struct apm32_adc *)device->parent.user_data);
#endif
volatile rt_uint32_t counter = 0;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(value != RT_NULL);
if (apm32_adc_channel_check(device, channel) != RT_EOK)
{
return -RT_ERROR;
}
#if defined(SOC_SERIES_APM32F1)
ADC_ConfigRegularChannel(adc_cfg->adc, channel, 1, ADC_SAMPLETIME_13CYCLES5);
ADC_StartCalibration(adc_cfg->adc);
/* Check the end of ADC calibration */
while (ADC_ReadCalibrationStartFlag(adc_cfg->adc))
{
if (++counter > DRV_ADC_TIME_OUT)
{
return RT_ETIMEOUT;
}
}
ADC_EnableSoftwareStartConv(adc_cfg->adc);
while (!ADC_ReadStatusFlag(adc_cfg->adc, ADC_FLAG_EOC))
{
if (++counter > DRV_ADC_TIME_OUT)
{
return RT_ETIMEOUT;
}
}
*value = ADC_ReadConversionValue(adc_cfg->adc);
#elif defined(SOC_SERIES_APM32F4)
ADC_ConfigRegularChannel(adc_cfg->adc, channel, 1, ADC_SAMPLETIME_15CYCLES);
ADC_SoftwareStartConv(adc_cfg->adc);
while (!ADC_ReadStatusFlag(adc_cfg->adc, ADC_FLAG_EOC))
{
if (++counter > DRV_ADC_TIME_OUT)
{
return RT_ETIMEOUT;
}
}
*value = ADC_ReadConversionValue(adc_cfg->adc);
#elif defined(SOC_SERIES_APM32F0)
ADC_ConfigChannel((uint16_t)(1u << ((channel) & 0xFu)), ADC_SAMPLE_TIME_239_5);
ADC_StartConversion();
while (!ADC_ReadStatusFlag(ADC_FLAG_CC))
{
if (++counter > DRV_ADC_TIME_OUT)
{
return RT_ETIMEOUT;
}
}
*value = ADC_ReadConversionValue();
#endif
return RT_EOK;
}
static const struct rt_adc_ops apm32_adc_ops =
{
.enabled = apm32_adc_enabled,
.convert = apm32_adc_get_value,
};
/**
* @brief ADC initialization function.
*
* @return RT_EOK indicates successful initialization, other value indicates failed;
*/
static int rt_hw_adc_init(void)
{
rt_err_t result = RT_EOK;
rt_size_t obj_num = sizeof(adc_config) / sizeof(struct apm32_adc);
rt_uint32_t i = 0;
for (i = 0; i < obj_num; i++)
{
/* register ADC device */
if (rt_hw_adc_register(&adc_config[i].adc_dev, adc_config[i].name, &apm32_adc_ops, &adc_config[i]) == RT_EOK)
{
LOG_D("%s init success", adc_config[i].name);
}
else
{
LOG_D("%s init failed", adc_config[i].name);
result = -RT_ERROR;
}
}
return result;
}
INIT_BOARD_EXPORT(rt_hw_adc_init);
#endif /* BSP_USING_ADCX */