rt-thread/bsp/nuvoton/libraries/ma35/rtt_port/drv_common.c

438 lines
10 KiB
C

/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2021-07-14 Wayne First version
*
******************************************************************************/
#include <rtthread.h>
#include <rthw.h>
#include <stdio.h>
#include "drv_common.h"
#include "board.h"
#include "drv_uart.h"
#define LOG_TAG "drv.common"
#undef DBG_ENABLE
#define DBG_SECTION_NAME LOG_TAG
#define DBG_LEVEL LOG_LVL_DBG
#define DBG_COLOR
#include <rtdbg.h>
#if defined(USE_MA35D1_AARCH32)
#define NORMAL_MEM_UNCACHED (SHARED|AP_RW|DOMAIN0|STRONGORDER|DESC_SEC)
/*
MMU TLB setting:
0xFFFFFFFF ----------------------------
| 1GB DDR(non-cacheable) |
0xC0000000 ----------------------------
| 1GB DDR(cacheable) |
0x80000000 ----------------------------
| DEVICE_MEM |
| |
0x00000000 ----------------------------
*/
struct mem_desc platform_mem_desc[] =
{
{0x00000000, 0x7FFFFFFF, 0x00000000, DEVICE_MEM}, // Peripherals
{0x80000000, DDR_LIMIT_SIZE - 1, 0x80000000, NORMAL_MEM}, // 1GB DDR, cacheable
{0xC0000000, 0xFFFFFFFF, 0x80000000, NORMAL_MEM_UNCACHED} // 1GB DDR, non-cacheable
};
const rt_uint32_t platform_mem_desc_size = sizeof(platform_mem_desc) / sizeof(platform_mem_desc[0]);
#endif
static void nu_mmu_initialize(void)
{
#if defined(USE_MA35D1_AARCH64)
mmu_init();
/* device memory 0x0000_0000 - 0x3FFF_FFFF */
armv8_map(0x00000000, 0x00000000, 0x40000000, MEM_ATTR_IO);
/* device memory 0x4000_0000 - 0x7FFF_FFFF */
armv8_map(0x40000000, 0x40000000, 0x40000000, MEM_ATTR_IO);
/* system memory 0x8000_0000 - 0xFFFF_FFFF */
armv8_map(0x80000000, 0x80000000, 0x80000000, MEM_ATTR_MEMORY);
mmu_enable();
#endif
}
#if !defined(USE_MA35D1_SUBM)
volatile uint32_t secondary_cpu_entry __attribute__((aligned(32))) = 0;
static rt_uint32_t timerStep;
void rt_hw_systick_isr(int vector, void *parameter)
{
gtimer_set_load_value(timerStep);
rt_tick_increase();
}
int rt_hw_systick_init(void)
{
rt_hw_interrupt_install(NonSecPhysicalTimer_IRQn, rt_hw_systick_isr, RT_NULL, "systick");
rt_hw_interrupt_umask(NonSecPhysicalTimer_IRQn);
timerStep = gtimer_get_counter_frequency();
timerStep /= RT_TICK_PER_SECOND;
gtimer_set_load_value(timerStep);
gtimer_set_control(1);
return 0;
}
void nu_sspcc_init(void)
{
int i, j;
CLK->APBCLK2 |= CLK_APBCLK2_SSPCCEN_Msk;
/* Set all GPIO security set to TZNS. */
for (i = 0; i < 16; i++)
{
for (j = 0; j < 14; j++)
{
SSPCC_SetRealm_GPIO(GPIO_BASE + (j * 0x40), i, SSPCC_SSET_TZNS);
}
}
}
void nu_ssmcc_init(void)
{
CLK->APBCLK2 |= CLK_APBCLK2_SSMCCEN_Msk;
/* set region 0 to secure region, non-secure and m4 all can access */
SSMCC_SetRegion0(SSMCC_SECURE_READ | SSMCC_SECURE_WRITE | SSMCC_NONSECURE_READ | SSMCC_NONSECURE_WRITE | SSMCC_M4NS_READ | SSMCC_M4NS_WRITE);
}
void nu_ddr_init(void)
{
UMCTL2->PCTRL_0 = UMCTL2_PCTRL_0_port_en_Msk; //[0x0490]
UMCTL2->PCTRL_1 = UMCTL2_PCTRL_1_port_en_Msk; //[0x0540]
UMCTL2->PCTRL_2 = UMCTL2_PCTRL_2_port_en_Msk; //[0x05f0]
UMCTL2->PCTRL_3 = UMCTL2_PCTRL_3_port_en_Msk; //[0x06a0]
UMCTL2->PCTRL_4 = UMCTL2_PCTRL_4_port_en_Msk; //[0x0750]
UMCTL2->PCTRL_5 = UMCTL2_PCTRL_5_port_en_Msk; //[0x0800]
UMCTL2->PCTRL_6 = UMCTL2_PCTRL_6_port_en_Msk; //[0x08b0]
UMCTL2->PCTRL_7 = UMCTL2_PCTRL_7_port_en_Msk; //[0x0960]
}
void rt_hw_us_delay(rt_uint32_t us)
{
rt_uint32_t ticks;
volatile rt_uint32_t told, tnow, tcnt = 0;
rt_uint32_t cmp = timerStep; // 12000 count / 1ms
ticks = us * (cmp / 1000); // us * 12(count/1us)
told = gtimer_get_current_value();
while (1)
{
/* Timer counter is increment. */
tnow = gtimer_get_current_value();
if (tnow != told)
{
/* 0 -- now === old -------- cmp */
if (tnow < told)
{
tcnt += (told - tnow);
}
else
{
/* 0 == old --- new ======== cmp */
tcnt += (cmp - tnow + told);
}
told = tnow;
/* Timeout */
if (tcnt >= ticks)
{
break;
}
}
__NOP();
}
} /* rt_hw_us_delay */
#else
void SysTick_Handler(void)
{
/* enter interrupt */
rt_interrupt_enter();
rt_tick_increase();
/* leave interrupt */
rt_interrupt_leave();
}
int rt_hw_systick_init(void)
{
/* User can use SystemCoreClockUpdate() to calculate SystemCoreClock. */
SystemCoreClockUpdate();
/* Configure SysTick */
SysTick_Config(SystemCoreClock / RT_TICK_PER_SECOND);
return 0;
}
/**
* The time delay function.
*
* @param microseconds.
*/
void rt_hw_us_delay(rt_uint32_t us)
{
rt_uint32_t ticks;
rt_uint32_t told, tnow, tcnt = 0;
rt_uint32_t reload = SysTick->LOAD;
ticks = us * reload / (1000000 / RT_TICK_PER_SECOND);
told = SysTick->VAL;
while (1)
{
tnow = SysTick->VAL;
if (tnow != told)
{
if (tnow < told)
{
tcnt += told - tnow;
}
else
{
tcnt += reload - tnow + told;
}
told = tnow;
if (tcnt >= ticks)
{
break;
}
}
}
}
#endif
void devmem(int argc, char *argv[])
{
volatile unsigned int u32Addr;
unsigned int value = 0, mode = 0;
if (argc < 2 || argc > 3)
{
goto exit_devmem;
}
if (argc == 3)
{
if (sscanf(argv[2], "0x%x", &value) != 1)
goto exit_devmem;
mode = 1; //Write
}
if (sscanf(argv[1], "0x%x", &u32Addr) != 1)
goto exit_devmem;
else if (u32Addr & (4 - 1))
goto exit_devmem;
if (mode)
{
*((volatile uint32_t *)u32Addr) = value;
}
rt_kprintf("0x%08x\n", *((volatile uint32_t *)u32Addr));
return;
exit_devmem:
rt_kprintf("Read: devmem <physical address in hex>\n");
rt_kprintf("Write: devmem <physical address in hex> <value in hex format>\n");
return;
}
MSH_CMD_EXPORT(devmem, dump device registers);
void devmem2(int argc, char *argv[])
{
volatile unsigned int u32Addr;
unsigned int value = 0, word_count = 1;
if (argc < 2 || argc > 3)
{
goto exit_devmem;
}
if (argc == 3)
{
if (sscanf(argv[2], "%d", &value) != 1)
goto exit_devmem;
word_count = value;
}
if (sscanf(argv[1], "0x%x", &u32Addr) != 1)
goto exit_devmem;
else if (u32Addr & (4 - 1))
goto exit_devmem;
if (word_count > 0)
{
LOG_HEX("devmem", 16, (void *)u32Addr, word_count * sizeof(rt_base_t));
}
return;
exit_devmem:
rt_kprintf("devmem2: <physical address in hex> <count in dec>\n");
return;
}
MSH_CMD_EXPORT(devmem2, dump device registers);
void idle_wfi(void)
{
#if defined(USE_MA35D1_SUBM)
__WFI();
#else
asm volatile("wfi");
#endif
}
extern void nu_clock_dump(void);
extern void nu_clock_raise(void);
RT_WEAK void nutool_pincfg_init(void)
{
}
/**
* This function will initial board.
*/
RT_WEAK void rt_hw_board_init(void)
{
/* Unlock protected registers */
SYS_UnlockReg();
#if !defined(USE_MA35D1_SUBM)
/* initialize SSPCC */
nu_sspcc_init();
/* initialize SSMCC */
nu_ssmcc_init();
/* initialize UMCTL2 */
nu_ddr_init();
#endif
/* initialize base clock */
nu_clock_init();
/* initialize peripheral pin function */
nutool_pincfg_init();
/* initialize hardware interrupt */
rt_hw_interrupt_init();
/* initialize MMU */
nu_mmu_initialize();
#if defined(RT_USING_HEAP)
rt_system_heap_init((void *)BOARD_HEAP_START, (void *)BOARD_HEAP_END);
#endif
/* initialize uart */
rt_hw_uart_init();
#if defined(RT_USING_CONSOLE)
rt_console_set_device(RT_CONSOLE_DEVICE_NAME);
#endif
#if !defined(USE_MA35D1_SUBM)
#if !defined(USE_MA35D1_AARCH64)
//TOFIX
nu_clock_raise();
#endif
nu_clock_dump();
#endif
#if defined(RT_USING_HEAP)
/* Dump heap information */
rt_kprintf("Heap: Begin@%08x, END@%08x, SIZE: %d KiB\n", BOARD_HEAP_START, BOARD_HEAP_END, ((rt_uint32_t)BOARD_HEAP_END - (rt_uint32_t)BOARD_HEAP_START) / 1024);
#endif
/* initialize systick */
rt_hw_systick_init();
rt_thread_idle_sethook(idle_wfi);
#if defined(RT_USING_COMPONENTS_INIT)
rt_components_board_init();
#endif
#if defined(RT_USING_SMP)
/* install IPI handle */
rt_hw_interrupt_set_priority(RT_SCHEDULE_IPI, 16);
rt_hw_ipi_handler_install(RT_SCHEDULE_IPI, rt_scheduler_ipi_handler);
rt_hw_interrupt_umask(RT_SCHEDULE_IPI);
#endif
}
#if defined(RT_USING_SMP)
extern void secondary_cpu_start(void);
void set_secondary_cpu_boot_address(void)
{
secondary_cpu_entry = (uint32_t)&secondary_cpu_start;
rt_kprintf("Wake up cpu-1 goto -> 0x%08x\n", secondary_cpu_entry);
}
void rt_hw_secondary_cpu_up(void)
{
rt_uint32_t i;
rt_uint32_t cpu_mask;
rt_kprintf("rt_hw_secondary_cpu_up is processing \r\n");
set_secondary_cpu_boot_address();
/* Flush to memory */
rt_cpu_dcache_clean_flush();
for (i = 1; i < RT_CPUS_NR; i++)
{
rt_kprintf("Bring up cpu-%d\r\n", i);
cpu_mask = 1 << i;
__asm__ volatile("dsb" ::
: "memory");
__asm__ volatile("isb" ::
: "memory");
__asm__ volatile("sev");
rt_hw_ipi_send(RT_SCHEDULE_IPI, cpu_mask);
}
}
void secondary_cpu_c_start(void)
{
rt_kprintf("[%s] cpu-%d\r\n", __func__, rt_hw_cpu_id());
rt_hw_vector_init();
rt_hw_spin_lock(&_cpus_lock);
arm_gic_cpu_init(0, platform_get_gic_cpu_base());
rt_hw_systick_init();
rt_system_scheduler_start();
}
void rt_hw_secondary_cpu_idle_exec(void)
{
asm volatile("wfe" ::
: "memory", "cc");
}
#endif