rt-thread/bsp/apm32/libraries/Drivers/drv_eth.c

779 lines
23 KiB
C

/*
* Copyright (c) 2006-2023, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2022-10-20 luobeihai first version
* 2023-01-10 luobeihai fix Eanble HARDWARE_CHECKSUM bug
*/
#include <board.h>
#ifdef BSP_USING_ETH
#include <netif/ethernetif.h>
#include <netif/etharp.h>
#include <lwip/icmp.h>
#include "lwipopts.h"
#include "lwip/ip.h"
#include "drv_eth.h"
/* debug option */
//#define DRV_DEBUG
//#define ETH_RX_DUMP
//#define ETH_TX_DUMP
#define LOG_TAG "drv.emac"
#include <drv_log.h>
/* Global pointers on Tx and Rx descriptor used to transmit and receive descriptors */
extern ETH_DMADescConfig_T *DMATxDescToSet, *DMARxDescToGet;
/* Ethernet Rx & Tx DMA Descriptors */
extern ETH_DMADescConfig_T DMARxDscrTab[ETH_RXBUFNB];
extern ETH_DMADescConfig_T DMATxDscrTab[ETH_TXBUFNB];
/* Ethernet Receive and Transmit buffers */
extern uint8_t Rx_Buff[ETH_RXBUFNB][ETH_RX_BUF_SIZE];
extern uint8_t Tx_Buff[ETH_TXBUFNB][ETH_TX_BUF_SIZE];
/* phy address */
static uint8_t phy_addr = 0xFF;
#define MAX_ADDR_LEN 6
struct rt_apm32_eth
{
/* inherit from ethernet device */
struct eth_device parent;
rt_timer_t poll_link_timer;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
uint32_t ETH_Speed; /*!< @ref ETH_Speed */
uint32_t ETH_Mode; /*!< @ref ETH_Duplex_Mode */
uint32_t ETH_HashTableHigh;
uint32_t ETH_HashTableLow;
};
static struct rt_apm32_eth apm32_eth_device;
static struct rt_semaphore tx_wait;
static rt_bool_t tx_is_waiting = RT_FALSE;
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
/* interrupt service routine */
void ETH_IRQHandler(void)
{
rt_uint32_t status, ier;
/* enter interrupt */
rt_interrupt_enter();
/* ETH DMA status registor */
status = ETH->DMASTS;
/* ETH DMA interrupt resgitor */
ier = ETH->DMAINTEN;
if(status & ETH_DMA_INT_MMC)
{
ETH_ClearDMAIntFlag(ETH_DMA_INT_MMC);
}
if(status & ETH_DMA_INT_NIS)
{
rt_uint32_t nis_clear = ETH_DMA_INT_NIS;
/* [0]:Transmit Interrupt. */
if((status & ier) & ETH_DMA_INT_TX) /* packet transmission */
{
if (tx_is_waiting == RT_TRUE)
{
tx_is_waiting = RT_FALSE;
rt_sem_release(&tx_wait);
}
nis_clear |= ETH_DMA_INT_TX;
}
/* [2]:Transmit Buffer Unavailable. */
/* [6]:Receive Interrupt. */
if((status & ier) & ETH_DMA_INT_RX) /* packet reception */
{
/* a frame has been received */
eth_device_ready(&(apm32_eth_device.parent));
nis_clear |= ETH_DMA_INT_RX;
}
/* [14]:Early Receive Interrupt. */
ETH_ClearDMAIntFlag(nis_clear);
}
if(status & ETH_DMA_INT_AIS)
{
rt_uint32_t ais_clear = ETH_DMA_INT_AIS;
/* [1]:Transmit Process Stopped. */
if(status & ETH_DMA_INT_TPS)
{
ais_clear |= ETH_DMA_INT_TPS;
}
/* [3]:Transmit Jabber Timeout. */
if(status & ETH_DMA_INT_TJT)
{
ais_clear |= ETH_DMA_INT_TJT;
}
/* [4]: Receive FIFO Overflow. */
if(status & ETH_DMA_INT_RO)
{
ais_clear |= ETH_DMA_INT_RO;
}
/* [5]: Transmit Underflow. */
if(status & ETH_DMA_INT_TU)
{
ais_clear |= ETH_DMA_INT_TU;
}
/* [7]: Receive Buffer Unavailable. */
if(status & ETH_DMA_INT_RBU)
{
ais_clear |= ETH_DMA_INT_RBU;
}
/* [8]: Receive Process Stopped. */
if(status & ETH_DMA_INT_RPS)
{
ais_clear |= ETH_DMA_INT_RPS;
}
/* [9]: Receive Watchdog Timeout. */
if(status & ETH_DMA_INT_RWT)
{
ais_clear |= ETH_DMA_INT_RWT;
}
/* [10]: Early Transmit Interrupt. */
/* [13]: Fatal Bus Error. */
if(status & ETH_DMA_INT_FBE)
{
ais_clear |= ETH_DMA_INT_FBE;
}
ETH_ClearDMAIntFlag(ais_clear);
}
/* leave interrupt */
rt_interrupt_leave();
}
#if (LWIP_IPV4 && LWIP_IGMP) || (LWIP_IPV6 && LWIP_IPV6_MLD)
/* polynomial: 0x04C11DB7 */
static uint32_t ethcrc(const uint8_t *data, size_t length)
{
uint32_t crc = 0xffffffff;
size_t i;
int j;
for (i = 0; i < length; i++)
{
for (j = 0; j < 8; j++)
{
if (((crc >> 31) ^ (data[i] >> j)) & 0x01)
{
/* x^26+x^23+x^22+x^16+x^12+x^11+x^10+x^8+x^7+x^5+x^4+x^2+x+1 */
crc = (crc << 1) ^ 0x04C11DB7;
}
else
{
crc = crc << 1;
}
}
}
return ~crc;
}
#define HASH_BITS 6 /* #bits in hash */
static void register_multicast_address(struct rt_apm32_eth *apm32_eth, const uint8_t *mac)
{
uint32_t crc;
uint8_t hash;
/* calculate crc32 value of mac address */
crc = ethcrc(mac, 6);
/* only upper 6 bits (HASH_BITS) are used
* which point to specific bit in he hash registers
*/
hash = (crc >> 26) & 0x3F;
//rt_kprintf("register_multicast_address crc: %08X hash: %02X\n", crc, hash);
if (hash > 31)
{
apm32_eth->ETH_HashTableHigh |= 1 << (hash - 32);
ETH->HTH = apm32_eth->ETH_HashTableHigh;
}
else
{
apm32_eth->ETH_HashTableLow |= 1 << hash;
ETH->HTL = apm32_eth->ETH_HashTableLow;
}
}
#endif /* (LWIP_IPV4 && LWIP_IGMP) || (LWIP_IPV6 && LWIP_IPV6_MLD) */
#if LWIP_IPV4 && LWIP_IGMP
static err_t igmp_mac_filter( struct netif *netif, const ip4_addr_t *ip4_addr, enum netif_mac_filter_action action )
{
uint8_t mac[6];
const uint8_t *p = (const uint8_t *)ip4_addr;
struct rt_apm32_eth *apm32_eth = (struct rt_apm32_eth *)netif->state;
mac[0] = 0x01;
mac[1] = 0x00;
mac[2] = 0x5E;
mac[3] = *(p+1) & 0x7F;
mac[4] = *(p+2);
mac[5] = *(p+3);
register_multicast_address(apm32_eth, mac);
if(1)
{
rt_kprintf("%s %s %s ", __FUNCTION__, (action==NETIF_ADD_MAC_FILTER)?"add":"del", ip4addr_ntoa(ip4_addr));
rt_kprintf("%02X:%02X:%02X:%02X:%02X:%02X\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
return 0;
}
#endif /* LWIP_IPV4 && LWIP_IGMP */
#if LWIP_IPV6 && LWIP_IPV6_MLD
static err_t mld_mac_filter( struct netif *netif, const ip6_addr_t *ip6_addr, enum netif_mac_filter_action action )
{
uint8_t mac[6];
const uint8_t *p = (const uint8_t *)&ip6_addr->addr[3];
struct rt_apm32_eth *apm32_eth = (struct rt_apm32_eth *)netif->state;
mac[0] = 0x33;
mac[1] = 0x33;
mac[2] = *(p+0);
mac[3] = *(p+1);
mac[4] = *(p+2);
mac[5] = *(p+3);
register_multicast_address(apm32_eth, mac);
if(1)
{
rt_kprintf("%s %s %s ", __FUNCTION__, (action==NETIF_ADD_MAC_FILTER)?"add":"del", ip6addr_ntoa(ip6_addr));
rt_kprintf("%02X:%02X:%02X:%02X:%02X:%02X\n", mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
}
return 0;
}
#endif /* LWIP_IPV6 && LWIP_IPV6_MLD */
/* initialize the interface */
static rt_err_t rt_apm32_eth_init(rt_device_t dev)
{
struct rt_apm32_eth * apm32_eth = (struct rt_apm32_eth *)dev;
ETH_Config_T ETH_InitStructure;
/* Enable ETHERNET clock */
#if defined(SOC_SERIES_APM32F1)
RCM_EnableAHBPeriphClock(RCM_AHB_PERIPH_ETH_MAC | RCM_AHB_PERIPH_ETH_MAC_TX |
RCM_AHB_PERIPH_ETH_MAC_RX);
#elif defined(SOC_SERIES_APM32F4)
RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_ETH_MAC | RCM_AHB1_PERIPH_ETH_MAC_Tx |
RCM_AHB1_PERIPH_ETH_MAC_Rx);
#endif
/* Reset ETHERNET on AHB Bus */
ETH_Reset();
/* Software reset */
ETH_SoftwareReset();
/* Wait for software reset */
while(ETH_ReadSoftwareReset() == SET);
/* ETHERNET Configuration --------------------------------------------------*/
/* Call ETH_StructInit if you don't like to configure all ETH_InitStructure parameter */
ETH_ConfigStructInit(&ETH_InitStructure);
/* Fill ETH_InitStructure parametrs */
/*------------------------ MAC -----------------------------------*/
ETH_InitStructure.autoNegotiation = ETH_AUTONEGOTIATION_ENABLE;
ETH_InitStructure.speed = (ETH_SPEED_T)apm32_eth->ETH_Speed;
ETH_InitStructure.mode = (ETH_MODE_T)apm32_eth->ETH_Mode;
ETH_InitStructure.loopbackMode = ETH_LOOPBACKMODE_DISABLE;
ETH_InitStructure.retryTransmission = ETH_RETRYTRANSMISSION_DISABLE;
ETH_InitStructure.automaticPadCRCStrip = ETH_AUTOMATICPADCRCSTRIP_DISABLE;
ETH_InitStructure.receiveAll = ETH_RECEIVEAll_DISABLE;
ETH_InitStructure.broadcastFramesReception = ETH_BROADCASTFRAMESRECEPTION_ENABLE;
ETH_InitStructure.promiscuousMode = ETH_PROMISCUOUS_MODE_DISABLE;
ETH_InitStructure.multicastFramesFilter = ETH_MULTICASTFRAMESFILTER_HASHTABLE;
ETH_InitStructure.hashTableHigh = apm32_eth->ETH_HashTableHigh;
ETH_InitStructure.hashTableLow = apm32_eth->ETH_HashTableLow;
ETH_InitStructure.unicastFramesFilter = ETH_UNICASTFRAMESFILTER_PERFECT;
#ifdef RT_LWIP_USING_HW_CHECKSUM
ETH_InitStructure.checksumOffload = ETH_CHECKSUMOFFLAOD_ENABLE;
#endif
/*------------------------ DMA -----------------------------------*/
/* When we use the Checksum offload feature, we need to enable the Store and Forward mode:
the store and forward guarantee that a whole frame is stored in the FIFO, so the MAC can insert/verify the checksum,
if the checksum is OK the DMA can handle the frame otherwise the frame is dropped */
ETH_InitStructure.dropTCPIPChecksumErrorFrame = ETH_DROPTCPIPCHECKSUMERRORFRAME_ENABLE;
ETH_InitStructure.receiveStoreForward = ETH_RECEIVESTOREFORWARD_ENABLE;
ETH_InitStructure.flushReceivedFrame = ETH_FLUSHRECEIVEDFRAME_DISABLE;
ETH_InitStructure.transmitStoreForward = ETH_TRANSMITSTOREFORWARD_ENABLE;
ETH_InitStructure.forwardErrorFrames = ETH_FORWARDERRORFRAMES_DISABLE;
ETH_InitStructure.forwardUndersizedGoodFrames = ETH_FORWARDUNDERSIZEDGOODFRAMES_DISABLE;
ETH_InitStructure.secondFrameOperate = ETH_SECONDFRAMEOPERARTE_ENABLE;
ETH_InitStructure.addressAlignedBeats = ETH_ADDRESSALIGNEDBEATS_ENABLE;
ETH_InitStructure.fixedBurst = ETH_FIXEDBURST_ENABLE;
ETH_InitStructure.rxDMABurstLength = ETH_RXDMABURSTLENGTH_32BEAT;
ETH_InitStructure.txDMABurstLength = ETH_TXDMABURSTLENGTH_32BEAT;
ETH_InitStructure.DMAArbitration = ETH_DMAARBITRATION_ROUNDROBIN_RXTX_2_1;
/* configure Ethernet */
ETH_Config(&ETH_InitStructure, phy_addr);
/* Enable DMA Receive interrupt (need to enable in this case Normal interrupt) */
ETH_EnableDMAInterrupt(ETH_DMA_INT_NIS | ETH_DMA_INT_RX | ETH_DMA_INT_TX);
NVIC_EnableIRQ(ETH_IRQn);
/* Initialize Tx Descriptors list: Chain Mode */
ETH_ConfigDMATxDescChain(DMATxDscrTab, &Tx_Buff[0][0], ETH_TXBUFNB);
/* Initialize Rx Descriptors list: Chain Mode */
ETH_ConfigDMARxDescChain(DMARxDscrTab, &Rx_Buff[0][0], ETH_RXBUFNB);
/* MAC address configuration */
ETH_ConfigMACAddress(ETH_MAC_ADDRESS0, (u8*)&apm32_eth_device.dev_addr[0]);
/* Enable MAC and DMA transmission and reception */
ETH_Start();
#if LWIP_IPV4 && LWIP_IGMP
netif_set_igmp_mac_filter(apm32_eth->parent.netif, igmp_mac_filter);
#endif /* LWIP_IPV4 && LWIP_IGMP */
#if LWIP_IPV6 && LWIP_IPV6_MLD
netif_set_mld_mac_filter(apm32_eth->parent.netif, mld_mac_filter);
#endif /* LWIP_IPV6 && LWIP_IPV6_MLD */
return RT_EOK;
}
static rt_err_t rt_apm32_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t rt_apm32_eth_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_ssize_t rt_apm32_eth_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_ssize_t rt_apm32_eth_write (rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t rt_apm32_eth_control(rt_device_t dev, int cmd, void *args)
{
switch(cmd)
{
case NIOCTL_GADDR:
/* get mac address */
if(args) rt_memcpy(args, apm32_eth_device.dev_addr, 6);
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* ethernet device interface */
/* transmit packet. */
rt_err_t rt_apm32_eth_tx( rt_device_t dev, struct pbuf* p)
{
struct pbuf* q;
rt_uint32_t offset;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
while ((DMATxDescToSet->Status & ETH_DMATXDESC_OWN) != (uint32_t)RESET)
{
rt_err_t result;
rt_uint32_t level;
level = rt_hw_interrupt_disable();
tx_is_waiting = RT_TRUE;
rt_hw_interrupt_enable(level);
/* it's own bit set, wait it */
result = rt_sem_take(&tx_wait, RT_WAITING_FOREVER);
if (result == RT_EOK) break;
if (result == -RT_ERROR) return -RT_ERROR;
}
offset = 0;
for (q = p; q != NULL; q = q->next)
{
uint8_t *to;
/* Copy the frame to be sent into memory pointed by the current ETHERNET DMA Tx descriptor */
to = (uint8_t*)((DMATxDescToSet->Buffer1Addr) + offset);
memcpy(to, q->payload, q->len);
offset += q->len;
}
#ifdef ETH_TX_DUMP
rt_kprintf("tx_dump, len:%d\r\n", p->tot_len);
dump_hex((rt_uint8_t*)(DMATxDescToSet->Buffer1Addr), p->tot_len);
#endif
/* Setting the Frame Length: bits[12:0] */
DMATxDescToSet->ControlBufferSize = (p->tot_len & ETH_DMATXDESC_TXBS1);
/* Setting the last segment and first segment bits (in this case a frame is transmitted in one descriptor) */
DMATxDescToSet->Status |= ETH_DMATXDESC_LS | ETH_DMATXDESC_FS;
/* Enable TX Completion Interrupt */
DMATxDescToSet->Status |= ETH_DMATXDESC_INTC;
#ifdef RT_LWIP_USING_HW_CHECKSUM
DMATxDescToSet->Status |= ETH_DMATXDESC_CHECKSUMTCPUDPICMPFULL;
/* clean ICMP checksum APM32F need */
{
struct eth_hdr *ethhdr = (struct eth_hdr *)(DMATxDescToSet->Buffer1Addr);
/* is IP ? */
if( ethhdr->type == htons(ETHTYPE_IP) )
{
struct ip_hdr *iphdr = (struct ip_hdr *)(DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR);
/* is ICMP ? */
if( IPH_PROTO(iphdr) == IP_PROTO_ICMP )
{
struct icmp_echo_hdr *iecho = (struct icmp_echo_hdr *)(DMATxDescToSet->Buffer1Addr + SIZEOF_ETH_HDR + sizeof(struct ip_hdr) );
iecho->chksum = 0;
}
}
}
#endif
/* Set Own bit of the Tx descriptor Status: gives the buffer back to ETHERNET DMA */
DMATxDescToSet->Status |= ETH_DMATXDESC_OWN;
/* When Tx Buffer unavailable flag is set: clear it and resume transmission */
if ((ETH->DMASTS & BIT2) != (u32)RESET)
{
/** Clear TBUS ETHERNET DMA flag */
ETH->DMASTS = BIT2;
/** Resume DMA transmission*/
ETH->DMATXPD = 0;
}
/* Update the ETHERNET DMA global Tx descriptor with next Tx decriptor */
/* Chained Mode */
/* Selects the next DMA Tx descriptor list for next buffer to send */
DMATxDescToSet = (ETH_DMADescConfig_T*) (DMATxDescToSet->Buffer2NextDescAddr);
/* Return SUCCESS */
return RT_EOK;
}
/* reception packet. */
struct pbuf *rt_apm32_eth_rx(rt_device_t dev)
{
struct pbuf* p;
rt_uint32_t offset = 0, framelength = 0;
/* init p pointer */
p = RT_NULL;
/* Check if the descriptor is owned by the ETHERNET DMA (when set) or CPU (when reset) */
if(((DMARxDescToGet->Status & ETH_DMARXDESC_OWN) != (uint32_t)RESET))
return p;
if (((DMARxDescToGet->Status & ETH_DMARXDESC_ERRS) == (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARXDESC_LDES) != (uint32_t)RESET) &&
((DMARxDescToGet->Status & ETH_DMARXDESC_FDES) != (uint32_t)RESET))
{
/* Get the Frame Length of the received packet: substruct 4 bytes of the CRC */
framelength = ((DMARxDescToGet->Status & ETH_DMARXDESC_FL) >> ETH_DMARXDESC_FRAME_LENGTHSHIFT) - 4;
/* allocate buffer */
p = pbuf_alloc(PBUF_LINK, framelength, PBUF_RAM);
if (p != RT_NULL)
{
struct pbuf* q;
for (q = p; q != RT_NULL; q= q->next)
{
/* Copy the received frame into buffer from memory pointed by the current ETHERNET DMA Rx descriptor */
memcpy(q->payload, (uint8_t *)((DMARxDescToGet->Buffer1Addr) + offset), q->len);
offset += q->len;
}
#ifdef ETH_RX_DUMP
rt_kprintf("rx_dump, len:%d\r\n", p->tot_len);
dump_hex((rt_uint8_t*)(DMARxDescToGet->Buffer1Addr), p->tot_len);
#endif
}
}
/* Set Own bit of the Rx descriptor Status: gives the buffer back to ETHERNET DMA */
DMARxDescToGet->Status = ETH_DMARXDESC_OWN;
/* When Rx Buffer unavailable flag is set: clear it and resume reception */
if ((ETH->DMASTS & BIT7) != (u32)RESET)
{
/* Clear RBUS ETHERNET DMA flag */
ETH->DMASTS = BIT7;
/* Resume DMA reception */
ETH->DMARXPD = 0;
}
/* Update the ETHERNET DMA global Rx descriptor with next Rx decriptor */
/* Chained Mode */
if((DMARxDescToGet->ControlBufferSize & ETH_DMARXDESC_RXCH) != (uint32_t)RESET)
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADescConfig_T*) (DMARxDescToGet->Buffer2NextDescAddr);
}
else /* Ring Mode */
{
if((DMARxDescToGet->ControlBufferSize & ETH_DMARXDESC_RXER) != (uint32_t)RESET)
{
/* Selects the first DMA Rx descriptor for next buffer to read: last Rx descriptor was used */
DMARxDescToGet = (ETH_DMADescConfig_T*) (ETH->DMARXDLADDR);
}
else
{
/* Selects the next DMA Rx descriptor list for next buffer to read */
DMARxDescToGet = (ETH_DMADescConfig_T*) ((uint32_t)DMARxDescToGet + 0x10 + ((ETH->DMABMOD & 0x0000007C) >> 2));
}
}
return p;
}
enum {
PHY_LINK = (1 << 0),
PHY_100M = (1 << 1),
PHY_FULL_DUPLEX = (1 << 2),
};
static void phy_linkchange(void)
{
uint8_t phy_speed_new = 0;
static uint8_t phy_speed = 0;
uint16_t status = ETH_ReadPHYRegister(phy_addr, PHY_BSR);
LOG_D("phy basic status reg is 0x%X", status);
if(status & (PHY_AUTONEGO_COMPLETE | PHY_LINKED_STATUS))
{
uint16_t SR;
phy_speed_new |= PHY_LINK;
SR = ETH_ReadPHYRegister(phy_addr, PHY_Status_REG);
LOG_D("phy control status reg is 0x%X", SR);
if (PHY_Status_SPEED_100M(SR))
{
phy_speed_new |= PHY_100M;
}
if (PHY_Status_FULL_DUPLEX(SR))
{
phy_speed_new |= PHY_FULL_DUPLEX;
}
}
/* linkchange */
if(phy_speed_new != phy_speed)
{
if(phy_speed_new & PHY_LINK)
{
LOG_D("link up ");
if(phy_speed_new & PHY_100M)
{
LOG_D("100Mbps");
apm32_eth_device.ETH_Speed = ETH_SPEED_100M;
}
else
{
apm32_eth_device.ETH_Speed = ETH_SPEED_10M;
LOG_D("10Mbps");
}
if(phy_speed_new & PHY_FULL_DUPLEX)
{
LOG_D("full-duplex\r\n");
apm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
}
else
{
LOG_D("half-duplex\r\n");
apm32_eth_device.ETH_Mode = ETH_MODE_HALFDUPLEX;
}
rt_apm32_eth_init((rt_device_t)&apm32_eth_device);
/* send link up. */
eth_device_linkchange(&apm32_eth_device.parent, RT_TRUE);
} /* link up. */
else
{
LOG_I("link down\r\n");
/* send link down. */
eth_device_linkchange(&apm32_eth_device.parent, RT_FALSE);
} /* link down. */
phy_speed = phy_speed_new;
} /* linkchange */
}
static void phy_monitor_thread_entry(void *parameter)
{
uint8_t detected_count = 0;
while(phy_addr == 0xFF)
{
/* phy search */
rt_uint32_t i, temp;
for (i = 0; i <= 0x1F; i++)
{
temp = ETH_ReadPHYRegister(i, PHY_ID1_REG);
if (temp != 0xFFFF && temp != 0x00)
{
phy_addr = i;
break;
}
}
detected_count++;
rt_thread_mdelay(1000);
if (detected_count > 10)
{
LOG_E("No PHY device was detected, please check hardware!");
}
}
LOG_D("Found a phy, address:0x%02X", phy_addr);
/* RESET PHY */
LOG_D("RESET PHY!\r\n");
ETH_WritePHYRegister(phy_addr, PHY_BCR, PHY_RESET);
rt_thread_delay(RT_TICK_PER_SECOND * 2);
ETH_WritePHYRegister(phy_addr, PHY_BCR, PHY_AUTONEGOTIATION);
phy_linkchange();
apm32_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange,
NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC);
if (!apm32_eth_device.poll_link_timer || rt_timer_start(apm32_eth_device.poll_link_timer) != RT_EOK)
{
LOG_E("Start link change detection timer failed");
}
}
static int rt_hw_apm32_eth_init(void)
{
extern void phy_reset(void);
phy_reset();
void ETH_GPIO_Configuration(void);
ETH_GPIO_Configuration();
apm32_eth_device.ETH_Speed = ETH_SPEED_100M;
apm32_eth_device.ETH_Mode = ETH_MODE_FULLDUPLEX;
/* set mac address. */
apm32_eth_device.dev_addr[0] = 0x00;
apm32_eth_device.dev_addr[1] = 0x00;
apm32_eth_device.dev_addr[2] = 0x00;
apm32_eth_device.dev_addr[3] = 0x00;
apm32_eth_device.dev_addr[4] = 0x00;
apm32_eth_device.dev_addr[5] = 0x08;
apm32_eth_device.parent.parent.init = rt_apm32_eth_init;
apm32_eth_device.parent.parent.open = rt_apm32_eth_open;
apm32_eth_device.parent.parent.close = rt_apm32_eth_close;
apm32_eth_device.parent.parent.read = rt_apm32_eth_read;
apm32_eth_device.parent.parent.write = rt_apm32_eth_write;
apm32_eth_device.parent.parent.control = rt_apm32_eth_control;
apm32_eth_device.parent.parent.user_data = RT_NULL;
apm32_eth_device.parent.eth_rx = rt_apm32_eth_rx;
apm32_eth_device.parent.eth_tx = rt_apm32_eth_tx;
/* init tx semaphore */
rt_sem_init(&tx_wait, "tx_wait", 0, RT_IPC_FLAG_FIFO);
/* register eth device */
eth_device_init(&(apm32_eth_device.parent), "e0");
/* start phy monitor */
{
rt_thread_t tid;
tid = rt_thread_create("phy",
phy_monitor_thread_entry,
RT_NULL,
512,
RT_THREAD_PRIORITY_MAX - 2,
2);
if (tid != RT_NULL)
rt_thread_startup(tid);
}
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_apm32_eth_init);
#endif /* BSP_USING_ETH */