rt-thread/bsp/avr32uc3b0/SOFTWARE_FRAMEWORK/DRIVERS/FLASHC/flashc.c

1118 lines
33 KiB
C

/* This source file is part of the ATMEL AVR-UC3-SoftwareFramework-1.7.0 Release */
/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file *********************************************************************
*
* \brief FLASHC driver for AVR32 UC3.
*
* AVR32 Flash Controller driver module.
*
* - Compiler: IAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices with a FLASHC module can be used.
* - AppNote:
*
* \author Atmel Corporation: http://www.atmel.com \n
* Support and FAQ: http://support.atmel.no/
*
******************************************************************************/
/* Copyright (c) 2009 Atmel Corporation. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an Atmel
* AVR product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
*
*/
#include <avr32/io.h>
#include <stddef.h>
#include "compiler.h"
#include "flashc.h"
/*! \name FLASHC Writable Bit-Field Registers
*/
//! @{
typedef union
{
unsigned long fcr;
avr32_flashc_fcr_t FCR;
} u_avr32_flashc_fcr_t;
typedef union
{
unsigned long fcmd;
avr32_flashc_fcmd_t FCMD;
} u_avr32_flashc_fcmd_t;
//! @}
/*! \name Flash Properties
*/
//! @{
unsigned int flashc_get_flash_size(void)
{
#if (defined AVR32_FLASHC_300_H_INCLUDED)
static const unsigned int FLASH_SIZE[1 << AVR32_FLASHC_PR_FSZ_SIZE] =
{
32 << 10,
64 << 10,
128 << 10,
256 << 10,
384 << 10,
512 << 10,
768 << 10,
1024 << 10
};
return FLASH_SIZE[(AVR32_FLASHC.pr & AVR32_FLASHC_PR_FSZ_MASK) >> AVR32_FLASHC_PR_FSZ_OFFSET];
#else
static const unsigned int FLASH_SIZE[1 << AVR32_FLASHC_FSR_FSZ_SIZE] =
{
32 << 10,
64 << 10,
128 << 10,
256 << 10,
384 << 10,
512 << 10,
768 << 10,
1024 << 10
};
return FLASH_SIZE[(AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_FSZ_MASK) >> AVR32_FLASHC_FSR_FSZ_OFFSET];
#endif
}
unsigned int flashc_get_page_count(void)
{
return flashc_get_flash_size() / AVR32_FLASHC_PAGE_SIZE;
}
unsigned int flashc_get_page_count_per_region(void)
{
return flashc_get_page_count() / AVR32_FLASHC_REGIONS;
}
unsigned int flashc_get_page_region(int page_number)
{
return ((page_number >= 0) ? page_number : flashc_get_page_number()) / flashc_get_page_count_per_region();
}
unsigned int flashc_get_region_first_page_number(unsigned int region)
{
return region * flashc_get_page_count_per_region();
}
//! @}
/*! \name FLASHC Control
*/
//! @{
unsigned int flashc_get_wait_state(void)
{
return (AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_FWS_MASK) >> AVR32_FLASHC_FCR_FWS_OFFSET;
}
void flashc_set_wait_state(unsigned int wait_state)
{
u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr};
u_avr32_flashc_fcr.FCR.fws = wait_state;
AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr;
}
Bool flashc_is_ready_int_enabled(void)
{
return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_FRDY_MASK) != 0);
}
void flashc_enable_ready_int(Bool enable)
{
u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr};
u_avr32_flashc_fcr.FCR.frdy = (enable != FALSE);
AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr;
}
Bool flashc_is_lock_error_int_enabled(void)
{
return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_LOCKE_MASK) != 0);
}
void flashc_enable_lock_error_int(Bool enable)
{
u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr};
u_avr32_flashc_fcr.FCR.locke = (enable != FALSE);
AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr;
}
Bool flashc_is_prog_error_int_enabled(void)
{
return ((AVR32_FLASHC.fcr & AVR32_FLASHC_FCR_PROGE_MASK) != 0);
}
void flashc_enable_prog_error_int(Bool enable)
{
u_avr32_flashc_fcr_t u_avr32_flashc_fcr = {AVR32_FLASHC.fcr};
u_avr32_flashc_fcr.FCR.proge = (enable != FALSE);
AVR32_FLASHC.fcr = u_avr32_flashc_fcr.fcr;
}
//! @}
/*! \name FLASHC Status
*/
//! @{
Bool flashc_is_ready(void)
{
return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_FRDY_MASK) != 0);
}
void flashc_default_wait_until_ready(void)
{
while (!flashc_is_ready());
}
void (*volatile flashc_wait_until_ready)(void) = flashc_default_wait_until_ready;
/*! \brief Gets the error status of the FLASHC.
*
* \return The error status of the FLASHC built up from
* \c AVR32_FLASHC_FSR_LOCKE_MASK and \c AVR32_FLASHC_FSR_PROGE_MASK.
*
* \warning This hardware error status is cleared by all functions reading the
* Flash Status Register (FSR). This function is therefore not part of
* the driver's API which instead presents \ref flashc_is_lock_error
* and \ref flashc_is_programming_error.
*/
static unsigned int flashc_get_error_status(void)
{
return AVR32_FLASHC.fsr & (AVR32_FLASHC_FSR_LOCKE_MASK |
AVR32_FLASHC_FSR_PROGE_MASK);
}
//! Sticky error status of the FLASHC.
//! This variable is updated by functions that issue FLASHC commands. It
//! contains the cumulated FLASHC error status of all the FLASHC commands issued
//! by a function.
static unsigned int flashc_error_status = 0;
Bool flashc_is_lock_error(void)
{
return ((flashc_error_status & AVR32_FLASHC_FSR_LOCKE_MASK) != 0);
}
Bool flashc_is_programming_error(void)
{
return ((flashc_error_status & AVR32_FLASHC_FSR_PROGE_MASK) != 0);
}
//! @}
/*! \name FLASHC Command Control
*/
//! @{
unsigned int flashc_get_command(void)
{
return (AVR32_FLASHC.fcmd & AVR32_FLASHC_FCMD_CMD_MASK) >> AVR32_FLASHC_FCMD_CMD_OFFSET;
}
unsigned int flashc_get_page_number(void)
{
return (AVR32_FLASHC.fcmd & AVR32_FLASHC_FCMD_PAGEN_MASK) >> AVR32_FLASHC_FCMD_PAGEN_OFFSET;
}
void flashc_issue_command(unsigned int command, int page_number)
{
u_avr32_flashc_fcmd_t u_avr32_flashc_fcmd;
flashc_wait_until_ready();
u_avr32_flashc_fcmd.fcmd = AVR32_FLASHC.fcmd;
u_avr32_flashc_fcmd.FCMD.cmd = command;
if (page_number >= 0) u_avr32_flashc_fcmd.FCMD.pagen = page_number;
u_avr32_flashc_fcmd.FCMD.key = AVR32_FLASHC_FCMD_KEY_KEY;
AVR32_FLASHC.fcmd = u_avr32_flashc_fcmd.fcmd;
flashc_error_status = flashc_get_error_status();
flashc_wait_until_ready();
}
//! @}
/*! \name FLASHC Global Commands
*/
//! @{
void flashc_no_operation(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_NOP, -1);
}
void flashc_erase_all(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EA, -1);
}
//! @}
/*! \name FLASHC Protection Mechanisms
*/
//! @{
Bool flashc_is_security_bit_active(void)
{
return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_SECURITY_MASK) != 0);
}
void flashc_activate_security_bit(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_SSB, -1);
}
unsigned int flashc_get_bootloader_protected_size(void)
{
unsigned int bootprot = (1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1 -
flashc_read_gp_fuse_bitfield(AVR32_FLASHC_FGPFRLO_BOOTPROT_OFFSET,
AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE);
return (bootprot) ? AVR32_FLASHC_PAGE_SIZE << bootprot : 0;
}
unsigned int flashc_set_bootloader_protected_size(unsigned int bootprot_size)
{
flashc_set_gp_fuse_bitfield(AVR32_FLASHC_FGPFRLO_BOOTPROT_OFFSET,
AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE,
(1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1 -
((bootprot_size) ?
32 - clz((((min(max(bootprot_size, AVR32_FLASHC_PAGE_SIZE << 1),
AVR32_FLASHC_PAGE_SIZE <<
((1 << AVR32_FLASHC_FGPFRLO_BOOTPROT_SIZE) - 1)) +
AVR32_FLASHC_PAGE_SIZE - 1) /
AVR32_FLASHC_PAGE_SIZE) << 1) - 1) - 1 :
0));
return flashc_get_bootloader_protected_size();
}
Bool flashc_is_external_privileged_fetch_locked(void)
{
return (!flashc_read_gp_fuse_bit(AVR32_FLASHC_FGPFRLO_EPFL_OFFSET));
}
void flashc_lock_external_privileged_fetch(Bool lock)
{
flashc_set_gp_fuse_bit(AVR32_FLASHC_FGPFRLO_EPFL_OFFSET, !lock);
}
Bool flashc_is_page_region_locked(int page_number)
{
return flashc_is_region_locked(flashc_get_page_region(page_number));
}
Bool flashc_is_region_locked(unsigned int region)
{
return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_LOCK0_MASK << (region & (AVR32_FLASHC_REGIONS - 1))) != 0);
}
void flashc_lock_page_region(int page_number, Bool lock)
{
flashc_issue_command((lock) ? AVR32_FLASHC_FCMD_CMD_LP : AVR32_FLASHC_FCMD_CMD_UP, page_number);
}
void flashc_lock_region(unsigned int region, Bool lock)
{
flashc_lock_page_region(flashc_get_region_first_page_number(region), lock);
}
void flashc_lock_all_regions(Bool lock)
{
unsigned int error_status = 0;
unsigned int region = AVR32_FLASHC_REGIONS;
while (region)
{
flashc_lock_region(--region, lock);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
}
//! @}
/*! \name Access to General-Purpose Fuses
*/
//! @{
Bool flashc_read_gp_fuse_bit(unsigned int gp_fuse_bit)
{
return ((flashc_read_all_gp_fuses() & 1ULL << (gp_fuse_bit & 0x3F)) != 0);
}
U64 flashc_read_gp_fuse_bitfield(unsigned int pos, unsigned int width)
{
return flashc_read_all_gp_fuses() >> (pos & 0x3F) & ((1ULL << min(width, 64)) - 1);
}
U8 flashc_read_gp_fuse_byte(unsigned int gp_fuse_byte)
{
return flashc_read_all_gp_fuses() >> ((gp_fuse_byte & 0x07) << 3);
}
U64 flashc_read_all_gp_fuses(void)
{
return AVR32_FLASHC.fgpfrlo | (U64)AVR32_FLASHC.fgpfrhi << 32;
}
Bool flashc_erase_gp_fuse_bit(unsigned int gp_fuse_bit, Bool check)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EGPB, gp_fuse_bit & 0x3F);
return (check) ? flashc_read_gp_fuse_bit(gp_fuse_bit) : TRUE;
}
Bool flashc_erase_gp_fuse_bitfield(unsigned int pos, unsigned int width, Bool check)
{
unsigned int error_status = 0;
unsigned int gp_fuse_bit;
pos &= 0x3F;
width = min(width, 64);
for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++)
{
flashc_erase_gp_fuse_bit(gp_fuse_bit, FALSE);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
return (check) ? (flashc_read_gp_fuse_bitfield(pos, width) == (1ULL << width) - 1) : TRUE;
}
Bool flashc_erase_gp_fuse_byte(unsigned int gp_fuse_byte, Bool check)
{
unsigned int error_status;
unsigned int current_gp_fuse_byte;
U64 value = flashc_read_all_gp_fuses();
flashc_erase_all_gp_fuses(FALSE);
error_status = flashc_error_status;
for (current_gp_fuse_byte = 0; current_gp_fuse_byte < 8; current_gp_fuse_byte++, value >>= 8)
{
if (current_gp_fuse_byte != gp_fuse_byte)
{
flashc_write_gp_fuse_byte(current_gp_fuse_byte, value);
error_status |= flashc_error_status;
}
}
flashc_error_status = error_status;
return (check) ? (flashc_read_gp_fuse_byte(gp_fuse_byte) == 0xFF) : TRUE;
}
Bool flashc_erase_all_gp_fuses(Bool check)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EAGPF, -1);
return (check) ? (flashc_read_all_gp_fuses() == 0xFFFFFFFFFFFFFFFFULL) : TRUE;
}
void flashc_write_gp_fuse_bit(unsigned int gp_fuse_bit, Bool value)
{
if (!value)
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WGPB, gp_fuse_bit & 0x3F);
}
void flashc_write_gp_fuse_bitfield(unsigned int pos, unsigned int width, U64 value)
{
unsigned int error_status = 0;
unsigned int gp_fuse_bit;
pos &= 0x3F;
width = min(width, 64);
for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++, value >>= 1)
{
flashc_write_gp_fuse_bit(gp_fuse_bit, value & 0x01);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
}
void flashc_write_gp_fuse_byte(unsigned int gp_fuse_byte, U8 value)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_PGPFB, (gp_fuse_byte & 0x07) | value << 3);
}
void flashc_write_all_gp_fuses(U64 value)
{
unsigned int error_status = 0;
unsigned int gp_fuse_byte;
for (gp_fuse_byte = 0; gp_fuse_byte < 8; gp_fuse_byte++, value >>= 8)
{
flashc_write_gp_fuse_byte(gp_fuse_byte, value);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
}
void flashc_set_gp_fuse_bit(unsigned int gp_fuse_bit, Bool value)
{
if (value)
flashc_erase_gp_fuse_bit(gp_fuse_bit, FALSE);
else
flashc_write_gp_fuse_bit(gp_fuse_bit, FALSE);
}
void flashc_set_gp_fuse_bitfield(unsigned int pos, unsigned int width, U64 value)
{
unsigned int error_status = 0;
unsigned int gp_fuse_bit;
pos &= 0x3F;
width = min(width, 64);
for (gp_fuse_bit = pos; gp_fuse_bit < pos + width; gp_fuse_bit++, value >>= 1)
{
flashc_set_gp_fuse_bit(gp_fuse_bit, value & 0x01);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
}
void flashc_set_gp_fuse_byte(unsigned int gp_fuse_byte, U8 value)
{
unsigned int error_status;
switch (value)
{
case 0xFF:
flashc_erase_gp_fuse_byte(gp_fuse_byte, FALSE);
break;
case 0x00:
flashc_write_gp_fuse_byte(gp_fuse_byte, 0x00);
break;
default:
flashc_erase_gp_fuse_byte(gp_fuse_byte, FALSE);
error_status = flashc_error_status;
flashc_write_gp_fuse_byte(gp_fuse_byte, value);
flashc_error_status |= error_status;
}
}
void flashc_set_all_gp_fuses(U64 value)
{
unsigned int error_status;
switch (value)
{
case 0xFFFFFFFFFFFFFFFFULL:
flashc_erase_all_gp_fuses(FALSE);
break;
case 0x0000000000000000ULL:
flashc_write_all_gp_fuses(0x0000000000000000ULL);
break;
default:
flashc_erase_all_gp_fuses(FALSE);
error_status = flashc_error_status;
flashc_write_all_gp_fuses(value);
flashc_error_status |= error_status;
}
}
//! @}
/*! \name Access to Flash Pages
*/
//! @{
void flashc_clear_page_buffer(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_CPB, -1);
}
Bool flashc_is_page_erased(void)
{
return ((AVR32_FLASHC.fsr & AVR32_FLASHC_FSR_QPRR_MASK) != 0);
}
Bool flashc_quick_page_read(int page_number)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_QPR, page_number);
return flashc_is_page_erased();
}
Bool flashc_erase_page(int page_number, Bool check)
{
Bool page_erased = TRUE;
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EP, page_number);
if (check)
{
unsigned int error_status = flashc_error_status;
page_erased = flashc_quick_page_read(-1);
flashc_error_status |= error_status;
}
return page_erased;
}
Bool flashc_erase_all_pages(Bool check)
{
Bool all_pages_erased = TRUE;
unsigned int error_status = 0;
unsigned int page_number = flashc_get_page_count();
while (page_number)
{
all_pages_erased &= flashc_erase_page(--page_number, check);
error_status |= flashc_error_status;
}
flashc_error_status = error_status;
return all_pages_erased;
}
void flashc_write_page(int page_number)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WP, page_number);
}
Bool flashc_quick_user_page_read(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_QPRUP, -1);
return flashc_is_page_erased();
}
Bool flashc_erase_user_page(Bool check)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_EUP, -1);
return (check) ? flashc_quick_user_page_read() : TRUE;
}
void flashc_write_user_page(void)
{
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_WUP, -1);
}
volatile void *flashc_memset8(volatile void *dst, U8 src, size_t nbytes, Bool erase)
{
return flashc_memset16(dst, src | (U16)src << 8, nbytes, erase);
}
volatile void *flashc_memset16(volatile void *dst, U16 src, size_t nbytes, Bool erase)
{
return flashc_memset32(dst, src | (U32)src << 16, nbytes, erase);
}
volatile void *flashc_memset32(volatile void *dst, U32 src, size_t nbytes, Bool erase)
{
return flashc_memset64(dst, src | (U64)src << 32, nbytes, erase);
}
volatile void *flashc_memset64(volatile void *dst, U64 src, size_t nbytes, Bool erase)
{
// Use aggregated pointers to have several alignments available for a same address.
UnionCVPtr flash_array_end;
UnionVPtr dest;
Union64 source = {0};
StructCVPtr dest_end;
UnionCVPtr flash_page_source_end;
Bool incomplete_flash_page_end;
Union64 flash_dword;
UnionVPtr tmp;
unsigned int error_status = 0;
unsigned int i;
// Reformat arguments.
flash_array_end.u8ptr = AVR32_FLASH + flashc_get_flash_size();
dest.u8ptr = dst;
for (i = (Get_align((U32)dest.u8ptr, sizeof(U64)) - 1) & (sizeof(U64) - 1);
src; i = (i - 1) & (sizeof(U64) - 1))
{
source.u8[i] = src;
src >>= 8;
}
dest_end.u8ptr = dest.u8ptr + nbytes;
// If destination is outside flash, go to next flash page if any.
if (dest.u8ptr < AVR32_FLASH)
{
dest.u8ptr = AVR32_FLASH;
}
else if (flash_array_end.u8ptr <= dest.u8ptr && dest.u8ptr < AVR32_FLASHC_USER_PAGE)
{
dest.u8ptr = AVR32_FLASHC_USER_PAGE;
}
// If end of destination is outside flash, move it to the end of the previous flash page if any.
if (dest_end.u8ptr > AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE)
{
dest_end.u8ptr = AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE;
}
else if (AVR32_FLASHC_USER_PAGE >= dest_end.u8ptr && dest_end.u8ptr > flash_array_end.u8ptr)
{
dest_end.u8ptr = flash_array_end.u8ptr;
}
// Align each end of destination pointer with its natural boundary.
dest_end.u16ptr = (U16 *)Align_down((U32)dest_end.u8ptr, sizeof(U16));
dest_end.u32ptr = (U32 *)Align_down((U32)dest_end.u16ptr, sizeof(U32));
dest_end.u64ptr = (U64 *)Align_down((U32)dest_end.u32ptr, sizeof(U64));
// While end of destination is not reached...
while (dest.u8ptr < dest_end.u8ptr)
{
// Clear the page buffer in order to prepare data for a flash page write.
flashc_clear_page_buffer();
error_status |= flashc_error_status;
// Determine where the source data will end in the current flash page.
flash_page_source_end.u64ptr =
(U64 *)min((U32)dest_end.u64ptr,
Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) + AVR32_FLASHC_PAGE_SIZE);
// Determine if the current destination page has an incomplete end.
incomplete_flash_page_end = (Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) >=
Align_down((U32)dest_end.u8ptr, AVR32_FLASHC_PAGE_SIZE));
// Use a flash double-word buffer to manage unaligned accesses.
flash_dword.u64 = source.u64;
// If destination does not point to the beginning of the current flash page...
if (!Test_align((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE))
{
// Fill the beginning of the page buffer with the current flash page data.
// This is required by the hardware, even if page erase is not requested,
// in order to be able to write successfully to erased parts of flash
// pages that have already been written to.
for (tmp.u8ptr = (U8 *)Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE);
tmp.u64ptr < (U64 *)Align_down((U32)dest.u8ptr, sizeof(U64));
tmp.u64ptr++)
*tmp.u64ptr = *tmp.u64ptr;
// If destination is not 64-bit aligned...
if (!Test_align((U32)dest.u8ptr, sizeof(U64)))
{
// Fill the beginning of the flash double-word buffer with the current
// flash page data.
// This is required by the hardware, even if page erase is not
// requested, in order to be able to write successfully to erased parts
// of flash pages that have already been written to.
for (i = 0; i < Get_align((U32)dest.u8ptr, sizeof(U64)); i++)
flash_dword.u8[i] = *tmp.u8ptr++;
// Align the destination pointer with its 64-bit boundary.
dest.u64ptr = (U64 *)Align_down((U32)dest.u8ptr, sizeof(U64));
// If the current destination double-word is not the last one...
if (dest.u64ptr < dest_end.u64ptr)
{
// Write the flash double-word buffer to the page buffer and reinitialize it.
*dest.u64ptr++ = flash_dword.u64;
flash_dword.u64 = source.u64;
}
}
}
// Write the source data to the page buffer with 64-bit alignment.
for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--)
*dest.u64ptr++ = source.u64;
// If the current destination page has an incomplete end...
if (incomplete_flash_page_end)
{
// This is required by the hardware, even if page erase is not requested,
// in order to be able to write successfully to erased parts of flash
// pages that have already been written to.
{
tmp.u8ptr = (volatile U8 *)dest_end.u8ptr;
// If end of destination is not 64-bit aligned...
if (!Test_align((U32)dest_end.u8ptr, sizeof(U64)))
{
// Fill the end of the flash double-word buffer with the current flash page data.
for (i = Get_align((U32)dest_end.u8ptr, sizeof(U64)); i < sizeof(U64); i++)
flash_dword.u8[i] = *tmp.u8ptr++;
// Write the flash double-word buffer to the page buffer.
*dest.u64ptr++ = flash_dword.u64;
}
// Fill the end of the page buffer with the current flash page data.
for (; !Test_align((U32)tmp.u64ptr, AVR32_FLASHC_PAGE_SIZE); tmp.u64ptr++)
*tmp.u64ptr = *tmp.u64ptr;
}
}
// If the current flash page is in the flash array...
if (dest.u8ptr <= AVR32_FLASHC_USER_PAGE)
{
// Erase the current page if requested and write it from the page buffer.
if (erase)
{
flashc_erase_page(-1, FALSE);
error_status |= flashc_error_status;
}
flashc_write_page(-1);
error_status |= flashc_error_status;
// If the end of the flash array is reached, go to the User page.
if (dest.u8ptr >= flash_array_end.u8ptr)
dest.u8ptr = AVR32_FLASHC_USER_PAGE;
}
// If the current flash page is the User page...
else
{
// Erase the User page if requested and write it from the page buffer.
if (erase)
{
flashc_erase_user_page(FALSE);
error_status |= flashc_error_status;
}
flashc_write_user_page();
error_status |= flashc_error_status;
}
}
// Update the FLASHC error status.
flashc_error_status = error_status;
// Return the initial destination pointer as the standard memset function does.
return dst;
}
volatile void *flashc_memcpy(volatile void *dst, const void *src, size_t nbytes, Bool erase)
{
// Use aggregated pointers to have several alignments available for a same address.
UnionCVPtr flash_array_end;
UnionVPtr dest;
UnionCPtr source;
StructCVPtr dest_end;
UnionCVPtr flash_page_source_end;
Bool incomplete_flash_page_end;
Union64 flash_dword;
Bool flash_dword_pending = FALSE;
UnionVPtr tmp;
unsigned int error_status = 0;
unsigned int i, j;
// Reformat arguments.
flash_array_end.u8ptr = AVR32_FLASH + flashc_get_flash_size();
dest.u8ptr = dst;
source.u8ptr = src;
dest_end.u8ptr = dest.u8ptr + nbytes;
// If destination is outside flash, go to next flash page if any.
if (dest.u8ptr < AVR32_FLASH)
{
source.u8ptr += AVR32_FLASH - dest.u8ptr;
dest.u8ptr = AVR32_FLASH;
}
else if (flash_array_end.u8ptr <= dest.u8ptr && dest.u8ptr < AVR32_FLASHC_USER_PAGE)
{
source.u8ptr += AVR32_FLASHC_USER_PAGE - dest.u8ptr;
dest.u8ptr = AVR32_FLASHC_USER_PAGE;
}
// If end of destination is outside flash, move it to the end of the previous flash page if any.
if (dest_end.u8ptr > AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE)
{
dest_end.u8ptr = AVR32_FLASHC_USER_PAGE + AVR32_FLASHC_USER_PAGE_SIZE;
}
else if (AVR32_FLASHC_USER_PAGE >= dest_end.u8ptr && dest_end.u8ptr > flash_array_end.u8ptr)
{
dest_end.u8ptr = flash_array_end.u8ptr;
}
// Align each end of destination pointer with its natural boundary.
dest_end.u16ptr = (U16 *)Align_down((U32)dest_end.u8ptr, sizeof(U16));
dest_end.u32ptr = (U32 *)Align_down((U32)dest_end.u16ptr, sizeof(U32));
dest_end.u64ptr = (U64 *)Align_down((U32)dest_end.u32ptr, sizeof(U64));
// While end of destination is not reached...
while (dest.u8ptr < dest_end.u8ptr)
{
// Clear the page buffer in order to prepare data for a flash page write.
flashc_clear_page_buffer();
error_status |= flashc_error_status;
// Determine where the source data will end in the current flash page.
flash_page_source_end.u64ptr =
(U64 *)min((U32)dest_end.u64ptr,
Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) + AVR32_FLASHC_PAGE_SIZE);
// Determine if the current destination page has an incomplete end.
incomplete_flash_page_end = (Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE) >=
Align_down((U32)dest_end.u8ptr, AVR32_FLASHC_PAGE_SIZE));
// If destination does not point to the beginning of the current flash page...
if (!Test_align((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE))
{
// Fill the beginning of the page buffer with the current flash page data.
// This is required by the hardware, even if page erase is not requested,
// in order to be able to write successfully to erased parts of flash
// pages that have already been written to.
for (tmp.u8ptr = (U8 *)Align_down((U32)dest.u8ptr, AVR32_FLASHC_PAGE_SIZE);
tmp.u64ptr < (U64 *)Align_down((U32)dest.u8ptr, sizeof(U64));
tmp.u64ptr++)
*tmp.u64ptr = *tmp.u64ptr;
// If destination is not 64-bit aligned...
if (!Test_align((U32)dest.u8ptr, sizeof(U64)))
{
// Fill the beginning of the flash double-word buffer with the current
// flash page data.
// This is required by the hardware, even if page erase is not
// requested, in order to be able to write successfully to erased parts
// of flash pages that have already been written to.
for (i = 0; i < Get_align((U32)dest.u8ptr, sizeof(U64)); i++)
flash_dword.u8[i] = *tmp.u8ptr++;
// Fill the end of the flash double-word buffer with the source data.
for (; i < sizeof(U64); i++)
flash_dword.u8[i] = *source.u8ptr++;
// Align the destination pointer with its 64-bit boundary.
dest.u64ptr = (U64 *)Align_down((U32)dest.u8ptr, sizeof(U64));
// If the current destination double-word is not the last one...
if (dest.u64ptr < dest_end.u64ptr)
{
// Write the flash double-word buffer to the page buffer.
*dest.u64ptr++ = flash_dword.u64;
}
// If the current destination double-word is the last one, the flash
// double-word buffer must be kept for later.
else flash_dword_pending = TRUE;
}
}
// Read the source data with the maximal possible alignment and write it to
// the page buffer with 64-bit alignment.
switch (Get_align((U32)source.u8ptr, sizeof(U32)))
{
case 0:
for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--)
*dest.u64ptr++ = *source.u64ptr++;
break;
case sizeof(U16):
for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--)
{
for (j = 0; j < sizeof(U64) / sizeof(U16); j++) flash_dword.u16[j] = *source.u16ptr++;
*dest.u64ptr++ = flash_dword.u64;
}
break;
default:
for (i = flash_page_source_end.u64ptr - dest.u64ptr; i; i--)
{
for (j = 0; j < sizeof(U64); j++) flash_dword.u8[j] = *source.u8ptr++;
*dest.u64ptr++ = flash_dword.u64;
}
}
// If the current destination page has an incomplete end...
if (incomplete_flash_page_end)
{
// If the flash double-word buffer is in use, do not initialize it.
if (flash_dword_pending) i = Get_align((U32)dest_end.u8ptr, sizeof(U64));
// If the flash double-word buffer is free...
else
{
// Fill the beginning of the flash double-word buffer with the source data.
for (i = 0; i < Get_align((U32)dest_end.u8ptr, sizeof(U64)); i++)
flash_dword.u8[i] = *source.u8ptr++;
}
// This is required by the hardware, even if page erase is not requested,
// in order to be able to write successfully to erased parts of flash
// pages that have already been written to.
{
tmp.u8ptr = (volatile U8 *)dest_end.u8ptr;
// If end of destination is not 64-bit aligned...
if (!Test_align((U32)dest_end.u8ptr, sizeof(U64)))
{
// Fill the end of the flash double-word buffer with the current flash page data.
for (; i < sizeof(U64); i++)
flash_dword.u8[i] = *tmp.u8ptr++;
// Write the flash double-word buffer to the page buffer.
*dest.u64ptr++ = flash_dword.u64;
}
// Fill the end of the page buffer with the current flash page data.
for (; !Test_align((U32)tmp.u64ptr, AVR32_FLASHC_PAGE_SIZE); tmp.u64ptr++)
*tmp.u64ptr = *tmp.u64ptr;
}
}
// If the current flash page is in the flash array...
if (dest.u8ptr <= AVR32_FLASHC_USER_PAGE)
{
// Erase the current page if requested and write it from the page buffer.
if (erase)
{
flashc_erase_page(-1, FALSE);
error_status |= flashc_error_status;
}
flashc_write_page(-1);
error_status |= flashc_error_status;
// If the end of the flash array is reached, go to the User page.
if (dest.u8ptr >= flash_array_end.u8ptr)
{
source.u8ptr += AVR32_FLASHC_USER_PAGE - dest.u8ptr;
dest.u8ptr = AVR32_FLASHC_USER_PAGE;
}
}
// If the current flash page is the User page...
else
{
// Erase the User page if requested and write it from the page buffer.
if (erase)
{
flashc_erase_user_page(FALSE);
error_status |= flashc_error_status;
}
flashc_write_user_page();
error_status |= flashc_error_status;
}
}
// Update the FLASHC error status.
flashc_error_status = error_status;
// Return the initial destination pointer as the standard memcpy function does.
return dst;
}
#if UC3C
void flashc_set_flash_waitstate_and_readmode(unsigned long cpu_f_hz)
{
//! Device-specific data
#undef AVR32_FLASHC_FWS_0_MAX_FREQ
#undef AVR32_FLASHC_FWS_1_MAX_FREQ
#undef AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ
#undef AVR32_FLASHC_HSEN_FWS_1_MAX_FREQ
#define AVR32_FLASHC_FWS_0_MAX_FREQ 33000000
#define AVR32_FLASHC_FWS_1_MAX_FREQ 66000000
#define AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ 33000000
#define AVR32_FLASHC_HSEN_FWS_1_MAX_FREQ 72000000
// These defines are missing from or wrong in the toolchain header files uc3cxxx.h
// Put a Bugzilla
if(cpu_f_hz > AVR32_FLASHC_HSEN_FWS_0_MAX_FREQ) // > 33MHz
{
// Set a wait-state
flashc_set_wait_state(1);
if(cpu_f_hz <= AVR32_FLASHC_FWS_1_MAX_FREQ) // <= 66MHz and >33Mhz
{
// Disable the high-speed read mode.
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1);
}
else // > 66Mhz
{
// Enable the high-speed read mode.
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSEN, -1);
}
}
else // <= 33 MHz
{
// Disable wait-state
flashc_set_wait_state(0);
// Disable the high-speed read mode.
flashc_issue_command(AVR32_FLASHC_FCMD_CMD_HSDIS, -1);
}
}
#endif // UC3C device-specific implementation
//! @}