rt-thread/components/drivers/spi/spi_wifi_rw009.c
2014-07-31 16:58:43 +08:00

591 lines
16 KiB
C

/*
* File : spi_wifi_rw009.c
* This file is part of RT-Thread RTOS
* Copyright by Shanghai Real-Thread Electronic Technology Co.,Ltd
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Change Logs:
* Date Author Notes
* 2014-07-31 aozima the first version
*/
#include <rtthread.h>
#include <drivers/spi.h>
#include <netif/ethernetif.h>
#include <netif/etharp.h>
#include <lwip/icmp.h>
#include "lwipopts.h"
#include "spi_wifi_rw009.h"
#define SSID_NAME "AP_SSID"
#define SSID_PASSWORD "AP_passwd"
//#define WIFI_DEBUG_ON
// #define ETH_RX_DUMP
// #define ETH_TX_DUMP
#ifdef WIFI_DEBUG_ON
#define WIFI_DEBUG rt_kprintf("[WIFI] ");rt_kprintf
#else
#define WIFI_DEBUG(...)
#endif /* #ifdef WIFI_DEBUG_ON */
#define MAX_BUFFER_SIZE (sizeof(struct response) + MAX_DATA_LEN)
#define MAX_ADDR_LEN 6
struct spi_wifi_eth
{
/* inherit from ethernet device */
struct eth_device parent;
struct rt_spi_device *rt_spi_device;
/* interface address info. */
rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* hw address */
rt_uint8_t active;
struct rt_mempool spi_tx_mp;
struct rt_mempool spi_rx_mp;
struct rt_mailbox spi_tx_mb;
struct rt_mailbox eth_rx_mb;
int spi_tx_mb_pool[SPI_TX_POOL_SIZE];
int eth_rx_mb_pool[SPI_TX_POOL_SIZE];
int spi_wifi_cmd_mb_pool[3];
struct rt_mailbox spi_wifi_cmd_mb;
ALIGN(4)
rt_uint8_t spi_tx_mempool[(sizeof(struct spi_data_packet) + 4) * SPI_TX_POOL_SIZE];
ALIGN(4)
rt_uint8_t spi_rx_mempool[(sizeof(struct spi_data_packet) + 4) * SPI_TX_POOL_SIZE];
ALIGN(4)
uint8_t spi_hw_rx_buffer[MAX_BUFFER_SIZE];
};
static struct spi_wifi_eth spi_wifi_device;
static struct rt_event spi_wifi_data_event;
static void resp_handler(struct spi_wifi_eth *wifi_device, struct spi_wifi_resp *resp)
{
struct spi_wifi_resp *resp_return;
switch (resp->cmd)
{
case SPI_WIFI_CMD_INIT:
WIFI_DEBUG("resp_handler SPI_WIFI_CMD_INIT\n");
resp_return = (struct spi_wifi_resp *)rt_malloc(sizeof(struct spi_wifi_resp)); //TODO:
memcpy(resp_return, resp, 10);
rt_mb_send(&wifi_device->spi_wifi_cmd_mb, (rt_uint32_t)resp_return);
break;
case SPI_WIFI_CMD_SCAN:
WIFI_DEBUG("resp_handler SPI_WIFI_CMD_SCAN\n");
break;
case SPI_WIFI_CMD_JOIN:
WIFI_DEBUG("resp_handler SPI_WIFI_CMD_JOIN\n");
wifi_device->active = 1;
eth_device_linkchange(&wifi_device->parent, RT_TRUE);
break;
default:
WIFI_DEBUG("resp_handler %d\n", resp->cmd);
break;
}
}
static rt_err_t spi_wifi_transfer(struct spi_wifi_eth *dev)
{
struct pbuf *p = RT_NULL;
struct cmd_request cmd;
struct response resp;
rt_err_t result;
const struct spi_data_packet *data_packet = RT_NULL;
struct spi_wifi_eth *wifi_device = (struct spi_wifi_eth *)dev;
struct rt_spi_device *rt_spi_device = wifi_device->rt_spi_device;
spi_wifi_int_cmd(0);
while (spi_wifi_is_busy());
WIFI_DEBUG("sequence start!\n");
memset(&cmd, 0, sizeof(struct cmd_request));
cmd.magic1 = CMD_MAGIC1;
cmd.magic2 = CMD_MAGIC2;
cmd.flag |= CMD_FLAG_MRDY;
result = rt_mb_recv(&wifi_device->spi_tx_mb,
(rt_uint32_t *)&data_packet,
0);
if ((result == RT_EOK) && (data_packet != RT_NULL) && (data_packet->data_len > 0))
{
cmd.M2S_len = data_packet->data_len + member_offset(struct spi_data_packet, buffer);
//WIFI_DEBUG("cmd.M2S_len = %d\n", cmd.M2S_len);
}
rt_spi_send(rt_spi_device, &cmd, sizeof(cmd));
while (spi_wifi_is_busy());
{
struct rt_spi_message message;
uint32_t max_data_len = 0;
/* setup message */
message.send_buf = RT_NULL;
message.recv_buf = &resp;
message.length = sizeof(resp);
message.cs_take = 1;
message.cs_release = 0;
rt_spi_take_bus(rt_spi_device);
/* transfer message */
rt_spi_device->bus->ops->xfer(rt_spi_device, &message);
if ((resp.magic1 != RESP_MAGIC1) || (resp.magic2 != RESP_MAGIC2))
{
WIFI_DEBUG("bad resp magic, abort!\n");
goto _bad_resp_magic;
}
if (resp.flag & RESP_FLAG_SRDY)
{
WIFI_DEBUG("RESP_FLAG_SRDY\n");
max_data_len = cmd.M2S_len;
}
if (resp.S2M_len)
{
WIFI_DEBUG("resp.S2M_len: %d\n", resp.S2M_len);
if (resp.S2M_len > sizeof(struct spi_data_packet))
{
WIFI_DEBUG("resp.S2M_len > sizeof(struct spi_data_packet), drop!\n");
resp.S2M_len = 0;//drop
}
if (resp.S2M_len > max_data_len)
max_data_len = resp.S2M_len;
}
if (max_data_len == 0)
{
WIFI_DEBUG("no rx or tx data!\n");
}
//WIFI_DEBUG("max_data_len = %d\n", max_data_len);
_bad_resp_magic:
/* setup message */
message.send_buf = data_packet;//&tx_buffer;
message.recv_buf = wifi_device->spi_hw_rx_buffer;//&rx_buffer;
message.length = max_data_len;
message.cs_take = 0;
message.cs_release = 1;
/* transfer message */
rt_spi_device->bus->ops->xfer(rt_spi_device, &message);
rt_spi_release_bus(rt_spi_device);
if (cmd.M2S_len && (resp.flag & RESP_FLAG_SRDY))
{
rt_mp_free((void *)data_packet);
}
if ((resp.S2M_len) && (resp.S2M_len <= MAX_DATA_LEN))
{
data_packet = (struct spi_data_packet *)wifi_device->spi_hw_rx_buffer;
if (data_packet->data_type == data_type_eth_data)
{
if (wifi_device->active)
{
p = pbuf_alloc(PBUF_LINK, data_packet->data_len, PBUF_RAM);
pbuf_take(p, (rt_uint8_t *)data_packet->buffer, data_packet->data_len);
rt_mb_send(&wifi_device->eth_rx_mb, (rt_uint32_t)p);
eth_device_ready((struct eth_device *)dev);
}
else
{
WIFI_DEBUG("!active, RX drop.\n");
}
}
else if (data_packet->data_type == data_type_resp)
{
WIFI_DEBUG("data_type_resp\n");
resp_handler(dev, (struct spi_wifi_resp *)data_packet->buffer);
}
else
{
WIFI_DEBUG("data_type: %d, %dbyte\n",
data_packet->data_type,
data_packet->data_len);
}
}
}
spi_wifi_int_cmd(1);
WIFI_DEBUG("sequence finish!\n\n");
if ((cmd.M2S_len == 0) && (resp.S2M_len == 0))
{
return -RT_ERROR;
}
return RT_EOK;
}
#if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP)
static void packet_dump(const char *msg, const struct pbuf *p)
{
rt_uint32_t i;
rt_uint8_t *ptr = p->payload;
rt_kprintf("%s %d byte\n", msg, p->tot_len);
for (i = 0; i < p->tot_len; i++)
{
if ((i % 8) == 0)
{
rt_kprintf(" ");
}
if ((i % 16) == 0)
{
rt_kprintf("\r\n");
}
rt_kprintf("%02x ", *ptr);
ptr++;
}
rt_kprintf("\n\n");
}
#endif /* dump */
/* initialize the interface */
static rt_err_t spi_wifi_eth_init(rt_device_t dev)
{
return RT_EOK;
}
static rt_err_t spi_wifi_eth_open(rt_device_t dev, rt_uint16_t oflag)
{
return RT_EOK;
}
static rt_err_t spi_wifi_eth_close(rt_device_t dev)
{
return RT_EOK;
}
static rt_size_t spi_wifi_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_size_t spi_wifi_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size)
{
rt_set_errno(-RT_ENOSYS);
return 0;
}
static rt_err_t spi_wifi_eth_control(rt_device_t dev, rt_uint8_t cmd, void *args)
{
struct spi_wifi_eth *wifi_device = (struct spi_wifi_eth *)dev;
struct spi_data_packet *data_packet;
struct spi_wifi_cmd *wifi_cmd;
struct spi_wifi_resp *resp;
switch (cmd)
{
case NIOCTL_GADDR:
memcpy(args, wifi_device->dev_addr, 6);
break;
case SPI_WIFI_CMD_INIT:
/* get mac address */
if (args)
{
rt_err_t result;
data_packet = (struct spi_data_packet *)rt_mp_alloc(&wifi_device->spi_tx_mp, RT_WAITING_FOREVER);
// TODO: check result.
wifi_cmd = (struct spi_wifi_cmd *)data_packet->buffer;
wifi_cmd->cmd = SPI_WIFI_CMD_INIT;
data_packet->data_type = data_type_cmd;
data_packet->data_len = member_offset(struct spi_wifi_cmd, buffer) + 0;
rt_mb_send(&wifi_device->spi_tx_mb, (rt_uint32_t)data_packet);
rt_event_send(&spi_wifi_data_event, 1);
result = rt_mb_recv(&wifi_device->spi_wifi_cmd_mb,
(rt_uint32_t *)&resp,
RT_WAITING_FOREVER);
if ((result == RT_EOK) && (resp != RT_NULL))
{
WIFI_DEBUG("resp cmd: %d\n", resp->cmd);
rt_memcpy(args, resp->buffer, 6);
}
}
else return -RT_ERROR;
break;
case SPI_WIFI_CMD_SCAN:
case SPI_WIFI_CMD_JOIN:
if (args)
{
struct cmd_join *cmd_join;
data_packet = (struct spi_data_packet *)rt_mp_alloc(&wifi_device->spi_tx_mp, RT_WAITING_FOREVER);
wifi_cmd = (struct spi_wifi_cmd *)data_packet->buffer;
wifi_cmd->cmd = SPI_WIFI_CMD_JOIN;
cmd_join = (struct cmd_join *)wifi_cmd->buffer;
#define WPA_SECURITY 0x00200000
#define WPA2_SECURITY 0x00400000
#define TKIP_ENABLED 0x0002
#define AES_ENABLED 0x0004
strncpy(cmd_join->ssid, SSID_NAME, SSID_NAME_LENGTH_MAX);
strncpy(cmd_join->passwd, SSID_PASSWORD, PASSWORD_LENGTH_MAX);
cmd_join->security = WPA2_SECURITY | TKIP_ENABLED | AES_ENABLED;
// cmd_join->security = WPA_SECURITY | TKIP_ENABLED;
data_packet->data_type = data_type_cmd;
data_packet->data_len = sizeof(struct cmd_join) + member_offset(struct spi_wifi_cmd, buffer);
rt_mb_send(&wifi_device->spi_tx_mb, (rt_uint32_t)data_packet);
rt_event_send(&spi_wifi_data_event, 1);
}
else return -RT_ERROR;
break;
default :
break;
}
return RT_EOK;
}
/* transmit packet. */
rt_err_t spi_wifi_eth_tx(rt_device_t dev, struct pbuf *p)
{
rt_err_t result = RT_EOK;
struct spi_data_packet *data_packet;
struct spi_wifi_eth *wifi_device = (struct spi_wifi_eth *)dev;
if (!wifi_device->active)
{
WIFI_DEBUG("!active, TX drop!\n");
return RT_EOK;
}
/* get free tx buffer */
data_packet = (struct spi_data_packet *)rt_mp_alloc(&wifi_device->spi_tx_mp, RT_WAITING_FOREVER);
if (data_packet != RT_NULL)
{
data_packet->data_type = data_type_eth_data;
data_packet->data_len = p->tot_len;
pbuf_copy_partial(p, data_packet->buffer, data_packet->data_len, 0);
rt_mb_send(&wifi_device->spi_tx_mb, (rt_uint32_t)data_packet);
eth_device_ready((struct eth_device *)dev);
}
else
return -RT_ERROR;
#ifdef ETH_TX_DUMP
packet_dump("TX dump", p);
#endif /* ETH_TX_DUMP */
/* Return SUCCESS */
return result;
}
/* reception packet. */
struct pbuf *spi_wifi_eth_rx(rt_device_t dev)
{
struct pbuf *p = RT_NULL;
struct spi_wifi_eth *wifi_device = (struct spi_wifi_eth *)dev;
if (rt_mb_recv(&wifi_device->eth_rx_mb, (rt_uint32_t *)&p, 0) != RT_EOK)
{
return RT_NULL;
}
return p;
}
static void spi_wifi_data_thread_entry(void *parameter)
{
rt_uint32_t e;
rt_err_t result;
while (1)
{
/* receive first event */
if (rt_event_recv(&spi_wifi_data_event,
1,
RT_EVENT_FLAG_AND | RT_EVENT_FLAG_CLEAR,
RT_WAITING_FOREVER,
&e) != RT_EOK)
{
continue;
}
result = spi_wifi_transfer(&spi_wifi_device);
if (result == RT_EOK)
{
rt_event_send(&spi_wifi_data_event, 1);
}
}
}
rt_err_t rt_hw_wifi_init(const char *spi_device_name)
{
memset(&spi_wifi_device, 0, sizeof(struct spi_wifi_eth));
spi_wifi_device.rt_spi_device = (struct rt_spi_device *)rt_device_find(spi_device_name);
if (spi_wifi_device.rt_spi_device == RT_NULL)
{
WIFI_DEBUG("spi device %s not found!\r\n", spi_device_name);
return -RT_ENOSYS;
}
/* config spi */
{
struct rt_spi_configuration cfg;
cfg.data_width = 8;
cfg.mode = RT_SPI_MODE_0 | RT_SPI_MSB; /* SPI Compatible: Mode 0 and Mode 3 */
cfg.max_hz = 1000000; /* 50M */
rt_spi_configure(spi_wifi_device.rt_spi_device, &cfg);
}
spi_wifi_device.parent.parent.init = spi_wifi_eth_init;
spi_wifi_device.parent.parent.open = spi_wifi_eth_open;
spi_wifi_device.parent.parent.close = spi_wifi_eth_close;
spi_wifi_device.parent.parent.read = spi_wifi_eth_read;
spi_wifi_device.parent.parent.write = spi_wifi_eth_write;
spi_wifi_device.parent.parent.control = spi_wifi_eth_control;
spi_wifi_device.parent.parent.user_data = RT_NULL;
spi_wifi_device.parent.eth_rx = spi_wifi_eth_rx;
spi_wifi_device.parent.eth_tx = spi_wifi_eth_tx;
rt_mp_init(&spi_wifi_device.spi_tx_mp,
"spi_tx",
&spi_wifi_device.spi_tx_mempool[0],
sizeof(spi_wifi_device.spi_tx_mempool),
sizeof(struct spi_data_packet));
rt_mp_init(&spi_wifi_device.spi_rx_mp,
"spi_rx",
&spi_wifi_device.spi_rx_mempool[0],
sizeof(spi_wifi_device.spi_rx_mempool),
sizeof(struct spi_data_packet));
rt_mb_init(&spi_wifi_device.spi_tx_mb,
"spi_tx",
&spi_wifi_device.spi_tx_mb_pool[0],
SPI_TX_POOL_SIZE,
RT_IPC_FLAG_PRIO);
rt_mb_init(&spi_wifi_device.eth_rx_mb,
"eth_rx",
&spi_wifi_device.eth_rx_mb_pool[0],
SPI_TX_POOL_SIZE,
RT_IPC_FLAG_PRIO);
rt_mb_init(&spi_wifi_device.spi_wifi_cmd_mb,
"wifi_cmd",
&spi_wifi_device.spi_wifi_cmd_mb_pool[0],
sizeof(spi_wifi_device.spi_wifi_cmd_mb_pool) / 4,
RT_IPC_FLAG_PRIO);
rt_event_init(&spi_wifi_data_event, "wifi", RT_IPC_FLAG_FIFO);
spi_wifi_hw_init();
{
rt_thread_t tid;
tid = rt_thread_create("wifi",
spi_wifi_data_thread_entry,
RT_NULL,
2048,
RT_THREAD_PRIORITY_MAX - 2,
20);
if (tid != RT_NULL)
rt_thread_startup(tid);
}
/* init: get mac address */
{
WIFI_DEBUG("wifi_control SPI_WIFI_CMD_INIT\n");
spi_wifi_eth_control((rt_device_t)&spi_wifi_device,
SPI_WIFI_CMD_INIT,
(void *)&spi_wifi_device.dev_addr[0]);
}
/* register eth device */
eth_device_init(&(spi_wifi_device.parent), "w0");
eth_device_linkchange(&spi_wifi_device.parent, RT_FALSE);
{
WIFI_DEBUG("wifi_control SPI_WIFI_CMD_JOIN\n");
spi_wifi_eth_control((rt_device_t)&spi_wifi_device,
SPI_WIFI_CMD_JOIN,
(void *)&spi_wifi_device.dev_addr[0]);
WIFI_DEBUG("wifi_control exit\n");
}
return RT_EOK;
}
void spi_wifi_isr(int vector)
{
/* enter interrupt */
rt_interrupt_enter();
WIFI_DEBUG("spi_wifi_isr\n");
rt_event_send(&spi_wifi_data_event, 1);
/* leave interrupt */
rt_interrupt_leave();
}