整合libcpu/riscv中的移植文件 提供一份公共代码于common 在提交本pr时,除hpmicro的内核,rv32内核bsp已完成去除大部分的冗余,大部分代码采用common中的实现。本pr的作用是进一步统一common中的文件,从而提供一份公用代码,新移植的RV32内核的BSP可以全部使用common代码。 - 在common中提供一份公用文件:interrupt_gcc.S - 修改原有的文件,将原有的中断中上下文切换代码替换为interrupt_gcc.S - 基于上述修改,修改仓库中risc-v内核的BSP与移植相关的部分 (主要包含中断入口函数 中断栈等) - 在common中提供一份公用文件:trap_common.c;提供统一中断入口函数,中断入口函数初始化,中断入口注册等函数,并完善异常时的信息输出 - 在common中提供一份公用文件:rt_hw_stack_frame.h;将栈帧结构体剥离,供用户使用 - 在上述工作完成后,在上述工作的基础上测试仓库中risc-v内核的BSP - 完善函数中的命名,完善中断栈的获取 - 提供一份详细的基于现有common文件的移植指南 #### 在什么测试环境下测试通过 - 1.CH32V307V-R1-R0 - 2.CH32V208W-R0-1V4 - 3.HPM6750EVKMINI - 4.GD32VF103V-EVAL - 5.qemu(CORE-V-MCU ) > 与上述开发板使用同样芯片的BSP均测试通过 在CH32V307V-R1-R0与HPM6750EVKMINI上基于现有移植文件进行多线程复杂场景下的长时间测试,测试过程系统运行正常。
HPM SDK Overview
The HPM SDK Project is a software development kit based on HPMicro's MCUs, which supports a wide range of MCUs, based on the BSD license, including drivers, middleware and RTOS, such as littlevgl/ lwIP/ TinyUSB/ FreeRTOS, etc. It supports a large number of Boards.
HPM SDK Quick Start Guide
Minium required version of dependencies are:
Name | Version |
---|---|
CMake | 3.13 |
Python | 3.8 |
Install Dependencies
-
Ubuntu
- install tools
sudo apt install build-essential cmake ninja-build libc6-i386 libc6-i386-cross libstdc++6-i386-cross
- install python3 (3.8.5 minimum) and pip
sudo apt install python3 python3-pip
-
Windows
-
Windows Command Prompt The following commands assume you are using cmd.exe, it might differ if you are using PowerShell.
- Install Chocolatey (https://chocolatey.org/) It is a package manager for Windows, with which it's not that difficult to install native Windows dependencies.
- Install Chocolatey by the following instructions on the Chocolatey Install (https://chocolatey.org/install) page.
- Open "cmd.exe" as "Administrator"
- Disable global confirmation to avoid having to confirm installation of individual programs:
choco feature enable -n allowGlobalConfirmation
- Install CMake
choco install cmake --installargs 'ADD_CMAKE_TO_PATH=System'
- Install other tools:
choco install git python ninja
- Close the Administrator command prompt window.
-
-
Prepare Toolchain & Environment Variables
- Supported toolchains:
- gnu-gcc <-- default toolchain
- nds-gcc
- Toolchain setup:
- gnu-gcc:
- Grab a copy of toolchain zip package and unzip to certain path, take TOOLCHAIN_PATH for example, (riscv32-unknown-elf-gcc is supposed to be found in TOOLCHAIN_PATH/bin)
- Declare a system environment variable of "GNURISCV_TOOLCHAIN_PATH" to the path of toolchain:
- Linux, taking zsh for example (replace TOOLCHAIN_PATH with the path of toolchain on your workstation):
export GNURISCV_TOOLCHAIN_PATH=TOOLCHAIN_PATH export HPM_SDK_TOOLCHAIN_VARIANT=
- Windows command prompt:
set GNURISCV_TOOLCHAIN_PATH=TOOLCHAIN_PATH set HPM_SDK_TOOLCHAIN_VARIANT=
- nds-gcc:
- Grab a copy of toolchain zip package and unzip to certain path, take TOOLCHAIN_PATH for example, (riscv32-elf-gcc is supposed to be found in TOOLCHAIN_PATH/bin)
- Declare two system environment variables: "GNURISCV_TOOLCHAIN_PATH" to the path of toolchain; "HPM_SDK_TOOLCHAIN_VARIANT" to "nds-gcc":
- Linux, taking zsh for example (replace TOOLCHAIN_PATH with the path of toolchain on your workstation):
export GNURISCV_TOOLCHAIN_PATH=TOOLCHAIN_PATH export HPM_SDK_TOOLCHAIN_VARIANT=nds-gcc
- Windows command prompt:
set GNURISCV_TOOLCHAIN_PATH=TOOLCHAIN_PATH set HPM_SDK_TOOLCHAIN_VARIANT=nds-gcc
- gnu-gcc:
- Environment Variables:
- Using provided scripts to set the environment variable:
- Linux:
$ source env.sh
- Windows command prompt:
env.cmd
- Manually declare a environment variable of "HPM_SDK_BASE" to the path of SDK root:
- Linux, taking zsh for example (assume SDK is located at $HOME/hpm_sdk):
export HPM_SDK_BASE=$HOME/hpm_sdk
- Windows command prompt (assume SDK is located at c:\hpm_sdk):
set HPM_SDK_BASE=c:\hpm_sdk
- Using provided scripts to set the environment variable:
- Supported toolchains:
-
Install python dependencies
- Linux:
pip3 install --user -r "$HPM_SDK_BASE/scripts/requirements.txt"
- Window (by default, python3/pip3 is not available after Python 3.x installed on Windows, but only python/pip):
pip install --user -r "%HPM_SDK_BASE%/scripts/requirements.txt"
-
Build An Application with GNU GCC toolchain On finishing the steps mentioned above, SDK projects can be generated and built. The following steps describe how a demo can be built:
- Go to application directory, taking hello_world for example:
cd samples/hello_world
- create a directory for build
- Linux:
mkdir build
- Windows:
md build
- Change directory to "build"
cd build
- Generate build files for Ninja:
cmake -GNinja -DBOARD=hpm6750evk ..
Note: if it complains about "CMAKE_MAKE_PROGRAM is not set", please append -DCMAKE_MAKE_PROGRAM=YOUR_MAKE_EXECUTABLE_PATH to the previous command (NINJA_PATH is the folder in which ninja can be found):
cmake -GNinja -DBOARD=hpm6750evk -DCMAKE_MAKE_PROGRAM=NINJA_PATH/ninja ..
- Building:
ninja
When it's done the elf and other application related files can be found in the directory of "output", like map file, assembly source or binary file
-
Quick Guide to Run/Debug An Application (hello_world):
- Wire up the board, including debug probe (by default it supports jlink) and serial port
- power up the board
- open console connecting to the debug console (target serial port) with baudrate of 115200
- get a copy of openocd. it can be installed via package management system or downloaded from sourceforge or github. But please make sure its revision is > 0.11
- Go to SDK root directory, run provided environment variable scripts:
-
Linux:
$ source env.sh
-
Windows command prompt:
env.cmd
or setup environment variable OPENOCD_SCRIPTS manually:
-
Linux:
$ export OPENOCD_SCRIPTS=${HPM_SDK_BASE}/boards/openocd
-
Windows:
set OPENOCD_SCRIPTS=%HPM_SDK_BASE%\boards\openocd
- Start openocd with several configuration files in order of type of probe, type of core, type of board. For example, the following command will setup an openocd gdb server with ft2232 to single core on hpm6750evk
openocd -f probes/ft2232.cfg -f soc/hpm6750-single-core.cfg -f boards/hpm6750evk.cfg
Note: If using FTDI debugger and meet
Error: libusb_open() failed with LIBUSB_ERROR_NOT_FOUND
, please check the FTDI usb driver. If it is not installed correctly, use zadig to update:Open zadig, click Options-> List All Devices.
Select Dual RS232-HS (Interface 0).
Then click Install Driver or Replace Driver.
- Go to hello_world directory
cd samples/hello_world
- open up another terminal to start a gdb client
- gnu-gcc:
TOOLCHAIN_PATH/bin/riscv32-unknown-elf-gdb
- nds-gcc:
TOOLCHAIN_PATH/bin/riscv32-elf-gdb
- connect gdb client to the gdbserver started by openocd, (by default, gdbserver port is 3333)
gdb> file build/output/hello_world.elf gdb> target remote localhost:3333 gdb> load gdb> b main gdb> c
- on the debug console, "hello_world" is printed.
-
Build An Application with Segger Embedded Studio
- Segger Embedded Studio for RISC-V can be downloaded from https://www.segger.com/downloads/embedded-studio/
- Project file for Segger Embedded Studio will be generated while generating build files for Ninja mentioned in "Build An Application with GNU GCC toolchain"->"4. Generate build files for Ninja"
- The project file (.emProject) can be found at build/segger_embedded_studio/.
Note: openocd executable needs to be found in the PATH variable of current console, otherwise debug configuration will not be generated to project file and needs to be configured manually in Segger Embedded Studio later.