2020-04-14 22:18:42 +08:00

671 lines
23 KiB
C

#include "nordic_common.h"
#include "nrf.h"
#include "ble_hci.h"
#include "ble_advdata.h"
#include "ble_advertising.h"
#include "ble_conn_params.h"
#include "softdevice_handler.h"
#include "nrf_ble_gatt.h"
#include "app_timer.h"
#include "ble_nus.h"
#include "app_util_platform.h"
#include <rtthread.h>
typedef rt_size_t (*BLE_NOTIFY_T)(rt_uint8_t *buf, rt_uint16_t size);
#define STACK_EVT_MQ_NUM 10
#define FAST_ADV() \
do { \
uint32_t err_code; \
err_code = ble_advertising_start(BLE_ADV_MODE_FAST); \
APP_ERROR_CHECK(err_code); \
} while(0)
typedef enum
{
STACK_EV_DISCON = 1,
STACK_EV_DISPATCH = 2,
STACK_EV_KEY = 4,
} STACK_EV_E;
typedef struct
{
rt_list_t node;
void* evt;
} evt_list_t;
typedef enum
{
STACK_STATE_IDLE = 0,
STACK_STATE_ADV = 1,
STACK_STATE_CON = 2,
STACK_STATE_DISC = 3
} STACK_STATE_E;
STACK_STATE_E stack_state = STACK_STATE_IDLE;
rt_event_t stack_event;
rt_sem_t sd_evt_sem;
rt_mq_t stack_evt_mq;
rt_uint8_t *evt_sample;
BLE_NOTIFY_T rx_notify = RT_NULL;
// Low frequency clock source to be used by the SoftDevice
#define NRF_CLOCK_LFCLKSRC {.source = NRF_CLOCK_LF_SRC_XTAL, \
.rc_ctiv = 0, \
.rc_temp_ctiv = 0, \
.xtal_accuracy = NRF_CLOCK_LF_XTAL_ACCURACY_20_PPM}
#define CONN_CFG_TAG 1 /**< A tag that refers to the BLE stack configuration we set with @ref sd_ble_cfg_set. Default tag is @ref BLE_CONN_CFG_TAG_DEFAULT. */
#define APP_FEATURE_NOT_SUPPORTED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2 /**< Reply when unsupported features are requested. */
#define DEVICE_NAME "Nordic_UART" /**< Name of device. Will be included in the advertising data. */
#define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */
#define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */
#define APP_ADV_TIMEOUT_IN_SECONDS 30 /**< The advertising timeout (in units of seconds). */
#define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */
#define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */
#define SLAVE_LATENCY 0 /**< Slave latency. */
#define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */
#define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */
#define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */
#define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */
#define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */
#define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */
#define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */
static ble_nus_t m_nus; /**< Structure to identify the Nordic UART Service. */
static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */
static nrf_ble_gatt_t m_gatt; /**< GATT module instance. */
static ble_uuid_t m_adv_uuids[] = {{BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}}; /**< Universally unique service identifier. */
static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */
/**@brief Function for assert macro callback.
*
* @details This function will be called in case of an assert in the SoftDevice.
*
* @warning This handler is an example only and does not fit a final product. You need to analyse
* how your product is supposed to react in case of Assert.
* @warning On assert from the SoftDevice, the system can only recover on reset.
*
* @param[in] line_num Line number of the failing ASSERT call.
* @param[in] p_file_name File name of the failing ASSERT call.
*/
void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name)
{
app_error_handler(DEAD_BEEF, line_num, p_file_name);
}
/**@brief Function for the GAP initialization.
*
* @details This function will set up all the necessary GAP (Generic Access Profile) parameters of
* the device. It also sets the permissions and appearance.
*/
static void gap_params_init(void)
{
uint32_t err_code;
ble_gap_conn_params_t gap_conn_params;
ble_gap_conn_sec_mode_t sec_mode;
BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode);
err_code = sd_ble_gap_device_name_set(&sec_mode,
(const uint8_t *) DEVICE_NAME,
strlen(DEVICE_NAME));
APP_ERROR_CHECK(err_code);
memset(&gap_conn_params, 0, sizeof(gap_conn_params));
gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL;
gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL;
gap_conn_params.slave_latency = SLAVE_LATENCY;
gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT;
err_code = sd_ble_gap_ppcp_set(&gap_conn_params);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for handling the data from the Nordic UART Service.
*
* @details This function will process the data received from the Nordic UART BLE Service and send
* it to the UART module.
*
* @param[in] p_nus Nordic UART Service structure.
* @param[in] p_data Data to be send to UART module.
* @param[in] length Length of the data.
*/
/**@snippet [Handling the data received over BLE] */
static void nus_data_handler(ble_nus_t * p_nus, uint8_t * p_data, uint16_t length)
{
rt_kprintf("Received data from BLE NUS. Writing data on UART.\r\n");
for (uint32_t i = 0; i < length; i++)
{
rt_kprintf("%02x ", p_data[i]);
}
// ble_send(p_data, length);
if (rx_notify != RT_NULL)
{
rx_notify(p_data, length);
}
}
/**@snippet [Handling the data received over BLE] */
/**@brief Function for initializing services that will be used by the application.
*/
static void services_init(void)
{
uint32_t err_code;
ble_nus_init_t nus_init;
memset(&nus_init, 0, sizeof(nus_init));
nus_init.data_handler = nus_data_handler;
err_code = ble_nus_init(&m_nus, &nus_init);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for handling an event from the Connection Parameters Module.
*
* @details This function will be called for all events in the Connection Parameters Module
* which are passed to the application.
*
* @note All this function does is to disconnect. This could have been done by simply setting
* the disconnect_on_fail config parameter, but instead we use the event handler
* mechanism to demonstrate its use.
*
* @param[in] p_evt Event received from the Connection Parameters Module.
*/
static void on_conn_params_evt(ble_conn_params_evt_t * p_evt)
{
uint32_t err_code;
if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED)
{
err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE);
APP_ERROR_CHECK(err_code);
}
}
/**@brief Function for handling errors from the Connection Parameters module.
*
* @param[in] nrf_error Error code containing information about what went wrong.
*/
static void conn_params_error_handler(uint32_t nrf_error)
{
APP_ERROR_HANDLER(nrf_error);
}
/**@brief Function for initializing the Connection Parameters module.
*/
static void conn_params_init(void)
{
uint32_t err_code;
ble_conn_params_init_t cp_init;
memset(&cp_init, 0, sizeof(cp_init));
cp_init.p_conn_params = NULL;
cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY;
cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY;
cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT;
cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID;
cp_init.disconnect_on_fail = false;
cp_init.evt_handler = on_conn_params_evt;
cp_init.error_handler = conn_params_error_handler;
err_code = ble_conn_params_init(&cp_init);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for handling advertising events.
*
* @details This function will be called for advertising events which are passed to the application.
*
* @param[in] ble_adv_evt Advertising event.
*/
static void on_adv_evt(ble_adv_evt_t ble_adv_evt)
{
// uint32_t err_code;
switch (ble_adv_evt)
{
case BLE_ADV_EVT_FAST:
// err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING);
// APP_ERROR_CHECK(err_code);
stack_state = STACK_STATE_ADV;
rt_kprintf("ble fast advert\n");
break;
case BLE_ADV_EVT_IDLE:
// sleep_mode_enter();
stack_state = STACK_STATE_IDLE;
rt_kprintf("advert idle\n");
break;
default:
break;
}
}
/**@brief Function for the application's SoftDevice event handler.
*
* @param[in] p_ble_evt SoftDevice event.
*/
static void on_ble_evt(ble_evt_t * p_ble_evt)
{
uint32_t err_code;
switch (p_ble_evt->header.evt_id)
{
case BLE_GAP_EVT_CONNECTED:
// err_code = bsp_indication_set(BSP_INDICATE_CONNECTED);
// APP_ERROR_CHECK(err_code);
m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle;
stack_state = STACK_STATE_CON;
rt_kprintf("Connected\r\n");
break; // BLE_GAP_EVT_CONNECTED
case BLE_GAP_EVT_DISCONNECTED:
// err_code = bsp_indication_set(BSP_INDICATE_IDLE);
// APP_ERROR_CHECK(err_code);
m_conn_handle = BLE_CONN_HANDLE_INVALID;
stack_state = STACK_STATE_DISC;
rt_kprintf("Disconnected\r\n");
break; // BLE_GAP_EVT_DISCONNECTED
case BLE_GAP_EVT_SEC_PARAMS_REQUEST:
// Pairing not supported
err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL);
APP_ERROR_CHECK(err_code);
break; // BLE_GAP_EVT_SEC_PARAMS_REQUEST
case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST:
{
ble_gap_data_length_params_t dl_params;
// Clearing the struct will effectivly set members to @ref BLE_GAP_DATA_LENGTH_AUTO
memset(&dl_params, 0, sizeof(ble_gap_data_length_params_t));
err_code = sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, &dl_params, NULL);
APP_ERROR_CHECK(err_code);
} break;
case BLE_GATTS_EVT_SYS_ATTR_MISSING:
// No system attributes have been stored.
err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0);
APP_ERROR_CHECK(err_code);
break; // BLE_GATTS_EVT_SYS_ATTR_MISSING
case BLE_GATTC_EVT_TIMEOUT:
// Disconnect on GATT Client timeout event.
err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break; // BLE_GATTC_EVT_TIMEOUT
case BLE_GATTS_EVT_TIMEOUT:
// Disconnect on GATT Server timeout event.
err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle,
BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
APP_ERROR_CHECK(err_code);
break; // BLE_GATTS_EVT_TIMEOUT
case BLE_EVT_USER_MEM_REQUEST:
err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL);
APP_ERROR_CHECK(err_code);
break; // BLE_EVT_USER_MEM_REQUEST
case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST:
{
ble_gatts_evt_rw_authorize_request_t req;
ble_gatts_rw_authorize_reply_params_t auth_reply;
req = p_ble_evt->evt.gatts_evt.params.authorize_request;
if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID)
{
if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ) ||
(req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) ||
(req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL))
{
if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE)
{
auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE;
}
else
{
auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ;
}
auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED;
err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle,
&auth_reply);
APP_ERROR_CHECK(err_code);
}
}
} break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST
default:
// No implementation needed.
break;
}
}
/**@brief Function for dispatching a SoftDevice event to all modules with a SoftDevice
* event handler.
*
* @details This function is called from the SoftDevice event interrupt handler after a
* SoftDevice event has been received.
*
* @param[in] p_ble_evt SoftDevice event.
*/
static void ble_evt_dispatch(ble_evt_t * p_ble_evt)
{
if (rt_mq_send(stack_evt_mq, p_ble_evt, p_ble_evt->header.evt_len) != RT_EOK)
{
rt_kprintf("dispatch malloc failure\n");
}
else
{
rt_event_send(stack_event, STACK_EV_DISPATCH);
}
}
static rt_err_t evt_dispatch_worker(void)
{
ble_evt_t * p_ble_evt = (ble_evt_t *)evt_sample;
rt_err_t err;
err = rt_mq_recv(stack_evt_mq, (void*)evt_sample, BLE_STACK_EVT_MSG_BUF_SIZE, RT_WAITING_NO);
if (RT_EOK == err)
{
ble_conn_params_on_ble_evt(p_ble_evt);
nrf_ble_gatt_on_ble_evt(&m_gatt, p_ble_evt);
ble_nus_on_ble_evt(&m_nus, p_ble_evt);
on_ble_evt(p_ble_evt);
ble_advertising_on_ble_evt(p_ble_evt);
// bsp_btn_ble_on_ble_evt(p_ble_evt);
rt_kprintf("ble evt dispatch\n");
}
return err;
}
static uint32_t _softdevice_evt_schedule(void)
{
rt_sem_release(sd_evt_sem);
return NRF_SUCCESS;
}
/**@brief Function for the SoftDevice initialization.
*
* @details This function initializes the SoftDevice and the BLE event interrupt.
*/
static void ble_stack_init(void)
{
uint32_t err_code;
nrf_clock_lf_cfg_t clock_lf_cfg = NRF_CLOCK_LFCLKSRC;
// Initialize SoftDevice.
SOFTDEVICE_HANDLER_INIT(&clock_lf_cfg, _softdevice_evt_schedule);
// Fetch the start address of the application RAM.
uint32_t ram_start = 0;
err_code = softdevice_app_ram_start_get(&ram_start);
APP_ERROR_CHECK(err_code);
// Overwrite some of the default configurations for the BLE stack.
ble_cfg_t ble_cfg;
// Configure the maximum number of connections.
memset(&ble_cfg, 0, sizeof(ble_cfg));
ble_cfg.gap_cfg.role_count_cfg.periph_role_count = BLE_GAP_ROLE_COUNT_PERIPH_DEFAULT;
ble_cfg.gap_cfg.role_count_cfg.central_role_count = 0;
ble_cfg.gap_cfg.role_count_cfg.central_sec_count = 0;
err_code = sd_ble_cfg_set(BLE_GAP_CFG_ROLE_COUNT, &ble_cfg, ram_start);
APP_ERROR_CHECK(err_code);
// Configure the maximum ATT MTU.
memset(&ble_cfg, 0x00, sizeof(ble_cfg));
ble_cfg.conn_cfg.conn_cfg_tag = CONN_CFG_TAG;
ble_cfg.conn_cfg.params.gatt_conn_cfg.att_mtu = NRF_BLE_GATT_MAX_MTU_SIZE;
err_code = sd_ble_cfg_set(BLE_CONN_CFG_GATT, &ble_cfg, ram_start);
APP_ERROR_CHECK(err_code);
// Configure the maximum event length.
memset(&ble_cfg, 0x00, sizeof(ble_cfg));
ble_cfg.conn_cfg.conn_cfg_tag = CONN_CFG_TAG;
ble_cfg.conn_cfg.params.gap_conn_cfg.event_length = 320;
ble_cfg.conn_cfg.params.gap_conn_cfg.conn_count = BLE_GAP_CONN_COUNT_DEFAULT;
err_code = sd_ble_cfg_set(BLE_CONN_CFG_GAP, &ble_cfg, ram_start);
APP_ERROR_CHECK(err_code);
// Enable BLE stack.
err_code = softdevice_enable(&ram_start);
APP_ERROR_CHECK(err_code);
// Subscribe for BLE events.
err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for handling events from the GATT library. */
static void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, const nrf_ble_gatt_evt_t * p_evt)
{
if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED))
{
m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH;
rt_kprintf("Data len is set to 0x%X(%d)\r\n", m_ble_nus_max_data_len, m_ble_nus_max_data_len);
}
rt_kprintf("ATT MTU exchange completed. central 0x%x peripheral 0x%x\r\n", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph);
}
/**@brief Function for initializing the GATT library. */
static void gatt_init(void)
{
ret_code_t err_code;
err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler);
APP_ERROR_CHECK(err_code);
err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, 64);
APP_ERROR_CHECK(err_code);
}
/**@brief Function for initializing the Advertising functionality.
*/
static void advertising_init(void)
{
uint32_t err_code;
ble_advdata_t advdata;
ble_advdata_t scanrsp;
ble_adv_modes_config_t options;
// Build advertising data struct to pass into @ref ble_advertising_init.
memset(&advdata, 0, sizeof(advdata));
advdata.name_type = BLE_ADVDATA_FULL_NAME;
advdata.include_appearance = false;
advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE;
memset(&scanrsp, 0, sizeof(scanrsp));
scanrsp.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]);
scanrsp.uuids_complete.p_uuids = m_adv_uuids;
memset(&options, 0, sizeof(options));
options.ble_adv_fast_enabled = true;
options.ble_adv_fast_interval = APP_ADV_INTERVAL;
options.ble_adv_fast_timeout = APP_ADV_TIMEOUT_IN_SECONDS;
err_code = ble_advertising_init(&advdata, &scanrsp, &options, on_adv_evt, NULL);
APP_ERROR_CHECK(err_code);
ble_advertising_conn_cfg_tag_set(CONN_CFG_TAG);
}
/**@brief Function for handling app_uart events.
*
* @details This function will receive a single character from the app_uart module and append it to
* a string. The string will be be sent over BLE when the last character received was a
* 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length.
*/
/**@snippet [Handling the data received over UART] */
void uart_event_handle(rt_device_t uart)
{
uint8_t data_array[BLE_NUS_MAX_DATA_LEN];
rt_size_t size = 0;
uint32_t err_code;
size = rt_device_read(uart, 0, data_array, BLE_NUS_MAX_DATA_LEN);
if (size <= 0)
{
return;
}
do
{
err_code = ble_nus_string_send(&m_nus, data_array, size);
if ( (err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) )
{
APP_ERROR_CHECK(err_code);
}
} while (err_code == NRF_ERROR_BUSY);
}
/**@snippet [Handling the data received over UART] */
/**@brief Function for initializing the UART module.
*/
/**@snippet [UART Initialization] */
static rt_bool_t _stack_init(void)
{
uint32_t err_code;
stack_event = rt_event_create("stackev", RT_IPC_FLAG_FIFO);
sd_evt_sem = rt_sem_create("sdsem", 0, RT_IPC_FLAG_FIFO);
stack_evt_mq = rt_mq_create("stackmq", BLE_STACK_EVT_MSG_BUF_SIZE, STACK_EVT_MQ_NUM, RT_IPC_FLAG_FIFO);
evt_sample = rt_malloc(BLE_STACK_EVT_MSG_BUF_SIZE);
if (!stack_event || !sd_evt_sem || !stack_evt_mq || !evt_sample)
{
rt_kprintf("uart rx sem create failure\n");
return RT_FALSE;
}
// Initialize.
err_code = app_timer_init();
APP_ERROR_CHECK(err_code);
ble_stack_init();
gap_params_init();
gatt_init();
services_init();
advertising_init();
conn_params_init();
return RT_TRUE;
}
/**@brief Application main function.
*/
static void _stack_thread(void *parameter)
{
rt_tick_t next_timeout = (rt_tick_t)RT_WAITING_FOREVER;
FAST_ADV();
// Enter main loop.
for (;;)
{
rt_uint32_t event = 0;
rt_tick_t dispatch_timeout = RT_WAITING_NO;
rt_event_recv(stack_event, STACK_EV_DISCON | STACK_EV_DISPATCH | STACK_EV_KEY,
RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, next_timeout, &event);
if (evt_dispatch_worker() != RT_EOK)
{
dispatch_timeout = (rt_tick_t)RT_WAITING_FOREVER;
}
if (event & STACK_EV_DISCON)
{
if (BLE_CONN_HANDLE_INVALID != m_conn_handle)
{
sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION);
}
}
if (event & STACK_EV_KEY)
{
if (stack_state != STACK_STATE_CON && stack_state != STACK_STATE_ADV)
{
FAST_ADV();
}
}
next_timeout = (rt_tick_t)RT_WAITING_FOREVER;
if (dispatch_timeout < next_timeout)
{
next_timeout = dispatch_timeout;
}
}
}
static void _softdevice_thread(void* parameter)
{
for (;;)
{
rt_sem_take(sd_evt_sem, RT_WAITING_FOREVER);
intern_softdevice_events_execute();
}
}
rt_err_t ble_init(void)
{
rt_thread_t thread;
_stack_init();
thread = rt_thread_create("sdth", _softdevice_thread, RT_NULL, 512, 0, 10);
if (thread != RT_NULL)
{
rt_thread_startup(thread);
}
else
{
return RT_ERROR;
}
thread = rt_thread_create("bleth", _stack_thread, RT_NULL, 2048, 1, 10);
if (thread != RT_NULL)
{
return rt_thread_startup(thread);
}
return RT_ERROR;
}