rt-thread/bsp/stm32/libraries/HAL_Drivers/drv_usart.c

614 lines
18 KiB
C

/*
* Copyright (c) 2006-2018, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2018-10-30 SummerGift change to new framework
*/
#include "board.h"
#include "drv_usart.h"
#include "drv_config.h"
#ifdef RT_USING_SERIAL
//#define DRV_DEBUG
#define LOG_TAG "drv.usart"
#include <drv_log.h>
#if !defined(BSP_USING_UART1) && !defined(BSP_USING_UART2) && !defined(BSP_USING_UART3) && !defined(BSP_USING_UART4) && !defined(BSP_USING_UART5)
#error "Please define at least one BSP_USING_UARTx"
/* this driver can be disabled at menuconfig → RT-Thread Components → Device Drivers */
#endif
#ifdef RT_SERIAL_USING_DMA
static void stm32_dma_config(struct rt_serial_device *serial);
#endif
enum
{
#ifdef BSP_USING_UART1
UART1_INDEX,
#endif
#ifdef BSP_USING_UART2
UART2_INDEX,
#endif
#ifdef BSP_USING_UART3
UART3_INDEX,
#endif
#ifdef BSP_USING_UART4
UART4_INDEX,
#endif
#ifdef BSP_USING_UART5
UART5_INDEX,
#endif
};
static struct stm32_uart_config uart_config[] =
{
#ifdef BSP_USING_UART1
UART1_CONFIG,
#endif
#ifdef BSP_USING_UART2
UART2_CONFIG,
#endif
#ifdef BSP_USING_UART3
UART3_CONFIG,
#endif
#ifdef BSP_USING_UART4
UART4_CONFIG,
#endif
#ifdef BSP_USING_UART5
UART5_CONFIG,
#endif
};
static struct stm32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0};
static rt_err_t stm32_configure(struct rt_serial_device *serial, struct serial_configure *cfg)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
RT_ASSERT(cfg != RT_NULL);
uart = (struct stm32_uart *)serial->parent.user_data;
RT_ASSERT(uart != RT_NULL);
uart->handle.Instance = uart->config->Instance;
uart->handle.Init.BaudRate = cfg->baud_rate;
uart->handle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
uart->handle.Init.Mode = UART_MODE_TX_RX;
uart->handle.Init.OverSampling = UART_OVERSAMPLING_16;
switch (cfg->data_bits)
{
case DATA_BITS_8:
uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
break;
case DATA_BITS_9:
uart->handle.Init.WordLength = UART_WORDLENGTH_9B;
break;
default:
uart->handle.Init.WordLength = UART_WORDLENGTH_8B;
break;
}
switch (cfg->stop_bits)
{
case STOP_BITS_1:
uart->handle.Init.StopBits = UART_STOPBITS_1;
break;
case STOP_BITS_2:
uart->handle.Init.StopBits = UART_STOPBITS_2;
break;
default:
uart->handle.Init.StopBits = UART_STOPBITS_1;
break;
}
switch (cfg->parity)
{
case PARITY_NONE:
uart->handle.Init.Parity = UART_PARITY_NONE;
break;
case PARITY_ODD:
uart->handle.Init.Parity = UART_PARITY_ODD;
break;
case PARITY_EVEN:
uart->handle.Init.Parity = UART_PARITY_EVEN;
break;
default:
uart->handle.Init.Parity = UART_PARITY_NONE;
break;
}
if (HAL_UART_Init(&uart->handle) != HAL_OK)
{
return -RT_ERROR;
}
return RT_EOK;
}
static rt_err_t stm32_control(struct rt_serial_device *serial, int cmd, void *arg)
{
struct stm32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
rt_ubase_t ctrl_arg = (rt_ubase_t)arg;
#endif
RT_ASSERT(serial != RT_NULL);
uart = (struct stm32_uart *)serial->parent.user_data;
RT_ASSERT(uart != RT_NULL);
switch (cmd)
{
/* disable interrupt */
case RT_DEVICE_CTRL_CLR_INT:
/* disable rx irq */
NVIC_DisableIRQ(uart->config->irq_type);
/* disable interrupt */
__HAL_UART_DISABLE_IT(&(uart->handle), UART_IT_RXNE);
break;
/* enable interrupt */
case RT_DEVICE_CTRL_SET_INT:
/* enable rx irq */
NVIC_EnableIRQ(uart->config->irq_type);
/* enable interrupt */
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_RXNE);
break;
#ifdef RT_SERIAL_USING_DMA
case RT_DEVICE_CTRL_CONFIG:
if (ctrl_arg == RT_DEVICE_FLAG_DMA_RX)
{
stm32_dma_config(serial);
}
break;
#endif
}
return RT_EOK;
}
static int stm32_putc(struct rt_serial_device *serial, char c)
{
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct stm32_uart *)serial->parent.user_data;
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0)
uart->handle.Instance->TDR = c;
#else
uart->handle.Instance->DR = c;
#endif
while (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) == RESET);
return 1;
}
static int stm32_getc(struct rt_serial_device *serial)
{
int ch;
struct stm32_uart *uart;
RT_ASSERT(serial != RT_NULL);
uart = (struct stm32_uart *)serial->parent.user_data;
RT_ASSERT(uart != RT_NULL);
ch = -1;
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
{
#if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32F0)
ch = uart->handle.Instance->RDR & 0xff;
#else
ch = uart->handle.Instance->DR & 0xff;
#endif
}
return ch;
}
static const struct rt_uart_ops stm32_uart_ops =
{
.configure = stm32_configure,
.control = stm32_control,
.putc = stm32_putc,
.getc = stm32_getc,
};
/**
* Uart common interrupt process. This need add to uart ISR.
*
* @param serial serial device
*/
static void uart_isr(struct rt_serial_device *serial)
{
struct stm32_uart *uart;
#ifdef RT_SERIAL_USING_DMA
rt_size_t recv_total_index, recv_len;
rt_base_t level;
#endif
RT_ASSERT(serial != RT_NULL);
uart = (struct stm32_uart *) serial->parent.user_data;
RT_ASSERT(uart != RT_NULL);
/* UART in mode Receiver -------------------------------------------------*/
if ((__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_RXNE) != RESET))
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_IND);
}
#ifdef RT_SERIAL_USING_DMA
else if ((uart->uart_dma_flag) && (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_IDLE) != RESET) &&
(__HAL_UART_GET_IT_SOURCE(&(uart->handle), UART_IT_IDLE) != RESET))
{
level = rt_hw_interrupt_disable();
recv_total_index = serial->config.bufsz - __HAL_DMA_GET_COUNTER(&(uart->dma.handle));
recv_len = recv_total_index - uart->dma.last_index;
uart->dma.last_index = recv_total_index;
rt_hw_interrupt_enable(level);
if (recv_len)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
__HAL_UART_CLEAR_IDLEFLAG(&uart->handle);
}
#endif
else
{
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_ORE) != RESET)
{
__HAL_UART_CLEAR_OREFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_NE) != RESET)
{
__HAL_UART_CLEAR_NEFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_FE) != RESET)
{
__HAL_UART_CLEAR_FEFLAG(&uart->handle);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_PE) != RESET)
{
__HAL_UART_CLEAR_PEFLAG(&uart->handle);
}
#if !defined(SOC_SERIES_STM32L4) && !defined(SOC_SERIES_STM32F7) && !defined(SOC_SERIES_STM32F0)
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_LBD) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_LBD);
}
#endif
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_CTS) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_CTS);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TXE) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TXE);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_TC) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_TC);
}
if (__HAL_UART_GET_FLAG(&(uart->handle), UART_FLAG_RXNE) != RESET)
{
UART_INSTANCE_CLEAR_FUNCTION(&(uart->handle), UART_FLAG_RXNE);
}
}
}
#if defined(BSP_USING_UART1)
void USART1_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART1_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA)
void UART1_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART1_INDEX].dma.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART1_RX_USING_DMA) */
#endif /* BSP_USING_UART1 */
#if defined(BSP_USING_UART2)
void USART2_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART2_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA)
void UART2_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART2_INDEX].dma.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART2_RX_USING_DMA) */
#endif /* BSP_USING_UART2 */
#if defined(BSP_USING_UART3)
void USART3_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART3_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART3_RX_USING_DMA)
void UART3_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART3_INDEX].dma.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART3_RX_USING_DMA) */
#endif /* BSP_USING_UART3*/
#if defined(BSP_USING_UART4)
void UART4_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART4_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART4_RX_USING_DMA)
void UART4_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART4_INDEX].dma.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(BSP_UART_USING_DMA_RX) && defined(BSP_UART4_RX_USING_DMA) */
#endif /* BSP_USING_UART4*/
#if defined(BSP_USING_UART5)
void UART5_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
uart_isr(&(uart_obj[UART5_INDEX].serial));
/* leave interrupt */
rt_interrupt_leave();
}
#if defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA)
void UART5_DMA_RX_IRQHandler(void)
{
/* enter interrupt */
rt_interrupt_enter();
HAL_DMA_IRQHandler(&uart_obj[UART5_INDEX].dma.handle);
/* leave interrupt */
rt_interrupt_leave();
}
#endif /* defined(RT_SERIAL_USING_DMA) && defined(BSP_UART5_RX_USING_DMA) */
#endif /* BSP_USING_UART5*/
#ifdef RT_SERIAL_USING_DMA
static void stm32_dma_config(struct rt_serial_device *serial)
{
RT_ASSERT(serial != RT_NULL);
struct stm32_uart *uart = (struct stm32_uart *)serial->parent.user_data;
RT_ASSERT(uart != RT_NULL);
struct rt_serial_rx_fifo *rx_fifo;
LOG_D("%s dma config start", uart->config->name);
{
rt_uint32_t tmpreg= 0x00U;
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHBENR, uart->config->dma_rx->dma_rcc);
tmpreg = READ_BIT(RCC->AHBENR, uart->config->dma_rx->dma_rcc);
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4)
/* enable DMA clock && Delay after an RCC peripheral clock enabling*/
SET_BIT(RCC->AHB1ENR, uart->config->dma_rx->dma_rcc);
tmpreg = READ_BIT(RCC->AHB1ENR, uart->config->dma_rx->dma_rcc);
#endif
UNUSED(tmpreg); /* To avoid compiler warnings */
}
__HAL_LINKDMA(&(uart->handle), hdmarx, uart->dma.handle);
#if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32F0)
uart->dma.handle.Instance = uart->config->dma_rx->Instance;
#elif defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
uart->dma.handle.Instance = uart->config->dma_rx->Instance;
uart->dma.handle.Init.Channel = uart->config->dma_rx->channel;
#elif defined(SOC_SERIES_STM32L4)
uart->dma.handle.Instance = uart->config->dma_rx->Instance;
uart->dma.handle.Init.Request = uart->config->dma_rx->request;
#endif
uart->dma.handle.Init.Direction = DMA_PERIPH_TO_MEMORY;
uart->dma.handle.Init.PeriphInc = DMA_PINC_DISABLE;
uart->dma.handle.Init.MemInc = DMA_MINC_ENABLE;
uart->dma.handle.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
uart->dma.handle.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
uart->dma.handle.Init.Mode = DMA_CIRCULAR;
uart->dma.handle.Init.Priority = DMA_PRIORITY_MEDIUM;
#if defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7)
uart->dma.handle.Init.FIFOMode = DMA_FIFOMODE_DISABLE;
#endif
if (HAL_DMA_DeInit(&(uart->dma.handle)) != HAL_OK)
{
RT_ASSERT(0);
}
if (HAL_DMA_Init(&(uart->dma.handle)) != HAL_OK)
{
RT_ASSERT(0);
}
rx_fifo = (struct rt_serial_rx_fifo *)serial->serial_rx;
/* Start DMA transfer */
if (HAL_UART_Receive_DMA(&(uart->handle), rx_fifo->buffer, serial->config.bufsz) != HAL_OK)
{
/* Transfer error in reception process */
RT_ASSERT(0);
}
/* enable interrupt */
__HAL_UART_ENABLE_IT(&(uart->handle), UART_IT_IDLE);
/* enable rx irq */
HAL_NVIC_SetPriority(uart->config->dma_rx->dma_irq, 0, 0);
HAL_NVIC_EnableIRQ(uart->config->dma_rx->dma_irq);
HAL_NVIC_SetPriority(uart->config->irq_type, 1, 0);
HAL_NVIC_EnableIRQ(uart->config->irq_type);
LOG_D("%s dma RX instance: %x", uart->config->name, uart->dma.handle.Instance);
LOG_D("%s dma config done", uart->config->name);
}
/**
* @brief UART error callbacks
* @param huart: UART handle
* @note This example shows a simple way to report transfer error, and you can
* add your own implementation.
* @retval None
*/
void HAL_UART_ErrorCallback(UART_HandleTypeDef *huart)
{
RT_ASSERT(huart != NULL);
struct stm32_uart *uart = (struct stm32_uart *)huart;
LOG_D("%s: %s %d\n", __FUNCTION__, uart->config->name, huart->ErrorCode);
UNUSED(uart);
}
/**
* @brief Rx Transfer completed callback
* @param huart: UART handle
* @note This example shows a simple way to report end of DMA Rx transfer, and
* you can add your own implementation.
* @retval None
*/
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
struct rt_serial_device *serial;
struct stm32_uart *uart;
rt_size_t recv_len;
rt_base_t level;
RT_ASSERT(huart != NULL);
uart = (struct stm32_uart *)huart;
serial = &uart->serial;
level = rt_hw_interrupt_disable();
recv_len = serial->config.bufsz - uart->dma.last_index;
uart->dma.last_index = 0;
rt_hw_interrupt_enable(level);
if (recv_len)
{
rt_hw_serial_isr(serial, RT_SERIAL_EVENT_RX_DMADONE | (recv_len << 8));
}
}
#endif /* RT_SERIAL_USING_DMA */
static void stm32_uart_get_dma_config(void)
{
#ifdef BSP_UART1_RX_USING_DMA
uart_obj[UART1_INDEX].uart_dma_flag = 1;
static struct dma_config uart1_dma_rx = UART1_DMA_CONFIG;
uart_config[UART1_INDEX].dma_rx = &uart1_dma_rx;
#endif
#ifdef BSP_UART2_RX_USING_DMA
uart_obj[UART2_INDEX].uart_dma_flag = 1;
static struct dma_config uart2_dma_rx = UART2_DMA_CONFIG;
uart_config[UART2_INDEX].dma_rx = &uart2_dma_rx;
#endif
#ifdef BSP_UART3_RX_USING_DMA
uart_obj[UART3_INDEX].uart_dma_flag = 1;
static struct dma_config uart3_dma_rx = UART3_DMA_CONFIG;
uart_config[UART3_INDEX].dma_rx = &uart3_dma_rx;
#endif
#ifdef BSP_UART4_RX_USING_DMA
uart_obj[UART4_INDEX].uart_dma_flag = 1;
static struct dma_config uart4_dma_rx = UART4_DMA_CONFIG;
uart_config[UART4_INDEX].dma_rx = &uart4_dma_rx;
#endif
#ifdef BSP_UART5_RX_USING_DMA
uart_obj[UART5_INDEX].uart_dma_flag = 1;
static struct dma_config uart5_dma_rx = UART5_DMA_CONFIG;
uart_config[UART5_INDEX].dma_rx = &uart5_dma_rx;
#endif
}
int rt_hw_usart_init(void)
{
rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct stm32_uart);
struct serial_configure config = RT_SERIAL_CONFIG_DEFAULT;
rt_err_t result = 0;
stm32_uart_get_dma_config();
for (int i = 0; i < obj_num; i++)
{
uart_obj[i].config = &uart_config[i];
uart_obj[i].serial.ops = &stm32_uart_ops;
uart_obj[i].serial.config = config;
#if defined(RT_SERIAL_USING_DMA)
if(uart_obj[i].uart_dma_flag)
{
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial,uart_obj[i].config->name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX| RT_DEVICE_FLAG_DMA_RX
,&uart_obj[i]);
}
else
#endif
{
/* register UART device */
result = rt_hw_serial_register(&uart_obj[i].serial,uart_obj[i].config->name,
RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX
,&uart_obj[i]);
}
RT_ASSERT(result == RT_EOK);
}
return result;
}
#endif /* RT_USING_SERIAL */