rt-thread/bsp/CME_M7/StdPeriph_Driver/src/cmem7_uart.c

179 lines
5.2 KiB
C

/**
*****************************************************************************
* @file cmem7_uart.c
*
* @brief CMEM7 uart file
*
*
* @version V1.0
* @date 3. September 2013
*
* @note
*
*****************************************************************************
* @attention
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, CAPITAL-MICRO SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* <h2><center>&copy; COPYRIGHT 2013 Capital-micro </center></h2>
*****************************************************************************
*/
#include "cmem7_uart.h"
#define UART_Mode_8b 1
#define UART_Mode_8b_Parity 7
#define UART_BaudMode_0 0
#define UART_BaudMode_1 1
#define UART_BaudMode_Division 19200
#define UART_WR_MAX_FIFO_SIZE 16
static uint32_t UART_GetClock(UART0_Type* UARTx) {
uint32_t dividor;
assert_param(IS_UART_ALL_PERIPH(UARTx));
if ((uint32_t)UARTx == (uint32_t)UART0) {
dividor = GLOBAL_CTRL->CLK_SEL_0_b.UART0_CLK;
} else if ((uint32_t)UARTx == (uint32_t)UART1) {
dividor = GLOBAL_CTRL->CLK_SEL_0_b.UART1_CLK;
} else if ((uint32_t)UARTx == (uint32_t)UART2) {
dividor = GLOBAL_CTRL->CLK_SEL_1_b.UART2_CLK;
}
return SYSTEM_CLOCK_FREQ / (1 << (dividor + 1));
}
static uint16_t UART_CalcBaudrateReload(uint32_t FreqHz, uint32_t Baudrate) {
if (Baudrate <= UART_BaudMode_Division) {
/** reload in mode 0
* reload = FreqHz / 16 * Baudrate
* round up
* reload = FreqHz / 16 * Baudrate + 1/ 2
* reload = (2 * FreqHz + 16 * Baudrate) / 2 * 16 * Baudrate
*/
return ((FreqHz << 1) + (Baudrate << 4)) / (Baudrate << 5);
}
/** reload in mode 1
* reload = Baudrate * 16 * 65536 / FreqHz
* round up
* reload = Baudrate * 16 * 65536 / FreqHz + 1/ 2
* reload = (2 * Baudrate * 16 * 65536 + FreqHz) / 2 * FreqHz
*/
return ((((uint64_t)(Baudrate)) << 21) + FreqHz) / (FreqHz << 1);
}
void UART_Init(UART0_Type* UARTx, UART_InitTypeDef *init) {
assert_param(IS_UART_ALL_PERIPH(UARTx));
assert_param(init);
assert_param(IS_UART_STOPBITS(init->UART_StopBits));
assert_param(IS_UART_PARITY(init->UART_Parity));
/* TODO : assume clock is 50MHz */
UARTx->BAUDRATE = UART_CalcBaudrateReload(
UART_GetClock(UARTx), init->UART_BaudRate);
UARTx->CTRL_b.MODE =
(init->UART_Parity == UART_Parity_None) ?
UART_Mode_8b : UART_Mode_8b_Parity;
UARTx->CTRL_b.STOP = init->UART_StopBits;
UARTx->CTRL_b.PARITY =
(init->UART_Parity == UART_Parity_None) ?
UART_Parity_Even : init->UART_Parity;
UARTx->CTRL_b.LOOPBACK = init->UART_LoopBack;
UARTx->CTRL_b.RX_EN = init->UART_RxEn;
UARTx->CTRL_b.CTS = init->UART_CtsEn;
UARTx->CTRL_b.BAUD_MODE =
(init->UART_BaudRate > UART_BaudMode_Division) ?
UART_BaudMode_1 : UART_BaudMode_0;
UARTx->CTRL_b.FIFO_EN = TRUE;
UARTx->CTRL_b.RX_THRESHOLD = UART_WR_MAX_FIFO_SIZE;
UARTx->CTRL_b.RX_HALF_FULL = (UART_WR_MAX_FIFO_SIZE >> 1);
UARTx->TIMEOUT = 0xFF;
UARTx->INT_MASK |= UART_Int_All;
UARTx->INT_SEEN &= UART_Int_All;
}
void UART_EnableInt(UART0_Type* UARTx, uint32_t Int, BOOL enable) {
assert_param(IS_UART_ALL_PERIPH(UARTx));
assert_param(IS_UART_INT(Int));
if (enable) {
UARTx->INT_MASK &= ~Int;
} else {
UARTx->INT_MASK |= Int;
}
UARTx->INT_MASK &= UART_Int_All;
}
void UART_Enable(UART0_Type* UARTx, BOOL enable) {
assert_param(IS_UART_ALL_PERIPH(UARTx));
UARTx->RUN_b.EN = enable;
}
BOOL UART_GetIntStatus(UART0_Type* UARTx, uint32_t Int) {
assert_param(IS_UART_ALL_PERIPH(UARTx));
assert_param(IS_UART_INT(Int));
if (0 != (UARTx->INT_SEEN & Int)) {
return TRUE;
}
return FALSE;
}
void UART_ClearInt(UART0_Type* UARTx, uint32_t Int) {
assert_param(IS_UART_ALL_PERIPH(UARTx));
assert_param(IS_UART_INT(Int));
UARTx->INT_SEEN = Int;
}
uint8_t UART_Write(UART0_Type* UARTx, uint8_t Size, uint8_t* Data) {
uint8_t count;
/* Check the parameters */
assert_param(IS_UART_ALL_PERIPH(UARTx));
assert_param(Data);
if (!UARTx->RUN_b.EN) {
return 0;
}
count = 0;
while (!UARTx->STATUS_b.TF && count < Size) {
UARTx->TX_BUF = *(Data + count++);
}
return count;
}
/* return value is actual read data size */
uint8_t UART_Read(UART0_Type* UARTx, uint8_t Size, uint8_t* Data) {
uint8_t count;
assert_param(IS_UART_ALL_PERIPH(UARTx));
assert_param(Data);
if (!UARTx->RUN_b.EN) {
return 0;
}
count = 0;
while (UARTx->STATUS_b.RNE && count < Size) {
*(Data + count++) = (UARTx->RX_BUF & 0x00FF);
}
return count;
}