rt-thread/bsp/phytium/libraries/standalone/drivers/spi/fspim/fspim.c

758 lines
22 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright : (C) 2022 Phytium Information Technology, Inc.
* All Rights Reserved.
*
* This program is OPEN SOURCE software: you can redistribute it and/or modify it
* under the terms of the Phytium Public License as published by the Phytium Technology Co.,Ltd,
* either version 1.0 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the Phytium Public License for more details.
*
*
* FilePath: fspim.c
* Date: 2022-02-10 14:53:42
* LastEditTime: 2022-02-18 09:08:32
* Description:  This file is for spim api implementation.
*
* Modify History:
* Ver   Who        Date         Changes
* ----- ------     --------    --------------------------------------
* 1.0 zhugengyu 2021/12/3 init commit
* 1.1 zhugengyu 2022/4/15 support test mode
* 1.2 zhugengyu 2022/5/13 support spi dma
* 1.3 liqiaozhong 2022/12/30 add check func and spim option func
*/
/***************************** Include Files *********************************/
#include <string.h>
#include "fio.h"
#include "ferror_code.h"
#include "ftypes.h"
#include "fdebug.h"
#include "fspim_hw.h"
#include "fspim.h"
/************************** Constant Definitions *****************************/
/**************************** Type Definitions *******************************/
/***************** Macros (Inline Functions) Definitions *********************/
#define FSPIM_DEBUG_TAG "SPIM"
#define FSPIM_ERROR(format, ...) FT_DEBUG_PRINT_E(FSPIM_DEBUG_TAG, format, ##__VA_ARGS__)
#define FSPIM_WARN(format, ...) FT_DEBUG_PRINT_W(FSPIM_DEBUG_TAG, format, ##__VA_ARGS__)
#define FSPIM_INFO(format, ...) FT_DEBUG_PRINT_I(FSPIM_DEBUG_TAG, format, ##__VA_ARGS__)
#define FSPIM_DEBUG(format, ...) FT_DEBUG_PRINT_D(FSPIM_DEBUG_TAG, format, ##__VA_ARGS__)
/************************** Function Prototypes ******************************/
FError FSpimReset(FSpim *instance_p);
/************************** Variable Definitions *****************************/
static const char *FSPIM_ERROR_CODE_MSG[FSPIM_NUM_OF_ERR_CODE] =
{
"FSPIM_SUCCESS : The fspim was successful",
"FSPIM_ERR_INVAL_STATE : The fspim invalid state",
"FSPIM_ERR_NOT_READY : The fspim driver is not ready",
"FSPIM_ERR_INVAL_PARAM : The fspim input parameter is invalid",
"FSPIM_ERR_BUS_BUSY : The fspim bus is busy",
"FSPIM_ERR_NOT_SUPPORT : Operations are not supported by fspim",
"FSPIM_ERR_TIMEOUT : The fspim waits for a timeout",
"FSPIM_ERR_TRANS_FAIL : The fspim data transmission failed",
};
/*****************************************************************************/
/* 此文件主要为了完成用户对外接口,用户可以使用这些接口直接开始工作 */
/* - 包括用户API的定义和实现
- 同时包含必要的OPTION方法方便用户进行配置
- 如果驱动可以直接进行I/O操作在此源文件下可以将API 进行实现 */
/*
* @name: FSpimCfgInitialize
* @msg: Initializes a specific instance such that it is ready to be used.
* @param {FSpim} *instance_p FSPIM驱动控制数据
* @param {FSpimConfig} *config_p FSPIM驱动配置数据
* @return 驱动初始化的错误码信息FSPIM_SUCCESS 表示初始化成功,其它返回值表示初始化失败
*/
FError FSpimCfgInitialize(FSpim *instance_p, const FSpimConfig *input_config_p)
{
FASSERT(instance_p && input_config_p);
uintptr base_addr = instance_p->config.base_addr;
FError ret = FSPIM_SUCCESS;
/*
* If the device is started, disallow the initialize and return a Status
* indicating it is started. This allows the user to de-initialize the device
* and reinitialize, but prevents a user from inadvertently
* initializing.
*/
if (FT_COMPONENT_IS_READY == instance_p->is_ready)
{
FSPIM_WARN("The device has been initialized!!!");
}
/*
* Set default values and configuration data, including setting the
* callback handlers to stubs so the system will not crash should the
* application not assign its own callbacks.
*/
FSpimDeInitialize(instance_p);
instance_p->config = *input_config_p;
/* Reset the device. */
ret = FSpimReset(instance_p);
if (FSPIM_SUCCESS == ret)
{
instance_p->is_ready = FT_COMPONENT_IS_READY;
}
return ret;
}
/**
* @name: FSpimDeInitialize
* @msg: DeInitialization function for the device instance
* @return {无}
* @param {FSpim} *instance_p FSPIM驱动控制数据
*/
void FSpimDeInitialize(FSpim *instance_p)
{
FASSERT(instance_p);
instance_p->is_ready = 0;
memset(instance_p, 0, sizeof(*instance_p));
return;
}
/**
* @name: FSpimReset
* @msg: Reset FSPIM controller
* @return {FError} FSPIM_SUCCESS表示重置成功其它返回值表示重置失败
* @param {FSpim} *instance_p
*/
FError FSpimReset(FSpim *instance_p)
{
FASSERT(instance_p);
uintptr base_addr = instance_p->config.base_addr;
FError ret = FSPIM_SUCCESS;
u32 reg_val;
u32 fifo;
/* 禁用SPI控制器 */
FSpimSetEnable(base_addr, FALSE);
/* 选择数据长度和帧格式 */
reg_val = FSPIM_CTRL_R0_DFS(FSPIM_DEFAULT_DFS) |
FSPIM_CTRL_R0_FRF(FSPIM_DEFAULT_FRF) |
FSPIM_CTRL_R0_CFS(FSPIM_DEFAULT_CFS);
if (instance_p->config.en_test)
{
reg_val |= FSPIM_CTRL_R0_SLV_SRL(FSPIM_SRL_TEST); /* 设置测试模式TX Fifo和RX Fifo内部短接 */
}
else
{
reg_val |= FSPIM_CTRL_R0_SLV_SRL(FSPIM_SRL_NORAML); /* 设置为正常模式 */
}
FSpimSetCtrlR0(base_addr, reg_val);
/* 选择串行时钟极性和相位 */
FSpimSetCpha(base_addr, instance_p->config.cpha);
FSpimSetCpol(base_addr, instance_p->config.cpol);
/* 设置传输模式 */
FSpimSetTransMode(base_addr, FSPIM_TRANS_MODE_RX_TX);
/* 禁用slave */
FSpimSetSlaveEnable(base_addr, FALSE);
/* 禁用SPI 中断设置slave设备 */
FSpimMaskIrq(base_addr, FSPIM_IMR_ALL_BITS);
FSpimSelSlaveDev(base_addr, instance_p->config.slave_dev_id);
/* 获取SPI RX/TX FIFO 深度 */
if (0 == instance_p->tx_fifo_len)
{
fifo = FSpimGetTxFifoDepth(base_addr);
instance_p->tx_fifo_len = ((fifo == 1) ? 0 : fifo);
FSPIM_INFO("The fifo depth is %d ,tx effective length bits %d", fifo, instance_p->tx_fifo_len);
}
if (0 == instance_p->rx_fifo_len)
{
fifo = FSpimGetRxFifoDepth(base_addr);
instance_p->rx_fifo_len = ((fifo == 1) ? 0 : fifo);
FSPIM_INFO("The fifo depth is %d ,rx effective length bits %d", fifo, instance_p->rx_fifo_len);
}
FSPIM_WRITE_REG32(base_addr, FSPIM_DMA_CR_OFFSET, 0x0); /* disable ddma */
if (instance_p->config.en_dma)
{
/* recv data in continuous way */
FSpimSetCtrlR1(base_addr, FSPIM_CTRL_R1_NDF_64KB);
/* setup fifo threshold */
FSpimSetRxFifoThreshold(base_addr, instance_p->rx_fifo_len);
FSpimSetTxFifoThreshold(base_addr, instance_p->tx_fifo_len);
/* setup fifo DMA level to trigger interrupt */
FSpimSetRxDMALevel(base_addr, FSPIM_RX_DMA_LEVEL);
FSpimSetTxDMALevel(base_addr, FSPIM_TX_DMA_LEVEL);
}
else
{
FSpimSetCtrlR1(base_addr, 0);
FSpimSetRxFifoThreshold(base_addr, 0);
FSpimSetTxFifoThreshold(base_addr, 0);
FSpimSetRxDMALevel(base_addr, 0);
FSpimSetTxDMALevel(base_addr, 0);
}
ret = FSpimSetSpeed(base_addr, instance_p->config.max_freq_hz);
if (FSPIM_SUCCESS != ret)
{
return ret;
}
FSPIM_WRITE_REG32(base_addr, FSPIM_RX_SAMPLE_DLY_OFFSET, FSPIM_DEFAULT_RSD);
return ret;
}
/*
* @name: FSpimSetOption
* @msg: Give user a way to set speed and polarity etc.
* @param {FSpim} *instance_p FSPIM驱动控制数据
* @param {u32} option FSPIM操作标识数
* @param {u32} value FSPIM用户自定参数
* @return 驱动初始化的错误码信息FSPIM_SUCCESS 表示设置成功,其它返回值表示设置失败
*/
FError FSpimSetOption(FSpim *instance_p, u32 option, u32 value)
{
FASSERT(instance_p);
uintptr base_addr = instance_p->config.base_addr;
FError ret = FSPIM_SUCCESS;
boolean enabled = FSpimGetEnable(base_addr);
if (FT_COMPONENT_IS_READY != instance_p->is_ready)
{
FSPIM_ERROR("The device is not initialized!!!");
return FSPIM_ERR_NOT_READY;
}
FSpimSetEnable(base_addr, FALSE);
if (option == FSPIM_CPOLTYPE_OPTION)
{
if (value == FSPIM_CPOL_HIGH || value == FSPIM_CPOL_LOW)
{
FSpimSetCpol(base_addr, value);
instance_p->config.cpol = value;
FSPIM_INFO("Set cpol to %d", value);
}
else
{
FSPIM_ERROR("Input error, CPOL value should be 0 or 1.");
return FSPIM_ERR_INVAL_PARAM;
}
}
if (option == FSPIM_CPHATYPE_OPTION)
{
if (value == FSPIM_CPHA_2_EDGE || value == FSPIM_CPHA_1_EDGE)
{
FSpimSetCpha(base_addr, value);
instance_p->config.cpha = value;
FSPIM_INFO("Set cpha to %d", value);
}
else
{
FSPIM_ERROR("Input error, CPHA value should be 0 or 1.");
return FSPIM_ERR_INVAL_PARAM;
}
}
if (option == FSPIM_FREQUENCY_OPTION)
{
if (value <= (FSPI_CLK_FREQ_HZ / FSPIM_BAUD_R_SCKDV_MIN))
{
ret = FSpimSetSpeed(base_addr, value);
if (FSPIM_SUCCESS != ret)
{
return ret;
}
instance_p->config.max_freq_hz = value;
FSPIM_INFO("Set spim freqency to %d", value);
}
else
{
FSPIM_ERROR("Input error, spim freqency value should be less than 24M.");
return FSPIM_ERR_INVAL_PARAM;
}
}
if (enabled)
{
FSpimSetEnable(base_addr, TRUE);
}
return ret;
}
/*
* @name: FSpimGetOption
* @msg: Give user a way to get speed and polarity etc.
* @param {FSpim} *instance_p FSPIM驱动控制数据
* @param {u32} option FSPIM操作标识数
* @return {u32} 获取到的参数值
*/
u32 FSpimGetOption(FSpim *instance_p, u32 option)
{
FASSERT(instance_p);
uintptr base_addr = instance_p->config.base_addr;
u32 value;
if (option == FSPIM_CPOLTYPE_OPTION)
{
value = FSpimGetCpol(base_addr);
FSPIM_INFO("Get cpol value: %d", value);
return value;
}
if (option == FSPIM_CPHATYPE_OPTION)
{
value = FSpimGetCpha(base_addr);
FSPIM_INFO("Get cpha value: %d", value);
return value;
}
if (option == FSPIM_FREQUENCY_OPTION)
{
value = FSpimGetSpeed(base_addr);
FSPIM_INFO("Get freq_clock value: 0x%x, %d", value, value);
return value;
}
}
/**
* @name: FSpimGetTxRound
* @msg: 计算当前FIFO支持的发送字节数
* @return {fsize_t} 当前TX FIFO可以容纳的字节数
* @param {FSpim} *instance_p
*/
static fsize_t FSpimGetTxRound(FSpim *instance_p)
{
fsize_t data_width = instance_p->config.n_bytes;
uintptr base_addr = instance_p->config.base_addr;
fsize_t tx_left_round, tx_fifo_room, rx_tx_gap;
tx_left_round = (fsize_t)(instance_p->tx_buff_end - instance_p->tx_buff) / data_width;
tx_fifo_room = instance_p->tx_fifo_len -
FSpimGetTxFifoLevel(base_addr);
rx_tx_gap = ((fsize_t)(instance_p->rx_buff_end - instance_p->rx_buff) -
(fsize_t)(instance_p->tx_buff_end - instance_p->tx_buff)) / data_width;
FSPIM_DEBUG("tx_left_round: %d, tx_fifo_room: %d, gap: %d",
tx_left_round,
tx_fifo_room,
((fsize_t)(instance_p->tx_fifo_len) - rx_tx_gap));
return min3(tx_left_round,
tx_fifo_room,
((fsize_t)(instance_p->tx_fifo_len) - rx_tx_gap));
}
/**
* @name: FSpimFifoTx
* @msg: 利用Fifo进行发送
* @return {无}
* @param {FSpim} *instance_p
*/
void FSpimFifoTx(FSpim *instance_p)
{
FASSERT(instance_p);
fsize_t tx_round = FSpimGetTxRound(instance_p);
FSPIM_DEBUG("tx round: %d", tx_round);
uintptr base_addr = instance_p->config.base_addr;
u32 data_width = instance_p->config.n_bytes;
u16 data = 0xff;
while (tx_round)
{
if (instance_p->tx_buff_end - instance_p->length)
{
if (FSPIM_1_BYTE == data_width)
{
/*
* Data Transfer Width is Byte (8 bit).
*/
data = *(u8 *)(instance_p->tx_buff);
}
else if (FSPIM_2_BYTE == data_width)
{
/*
* Data Transfer Width is Half Word (16 bit).
*/
data = *(u16 *)(instance_p->tx_buff);
}
else
{
FASSERT(0);
}
}
FSpimWriteData(base_addr, data);
FSPIM_DEBUG(" send 0x%x", data);
instance_p->tx_buff += data_width;
tx_round--;
}
}
/**
* @name: FSpimGetRxRound
* @msg: 获取当前Fifo支持的接收字节数
* @return {fsize_t} 当前RX FIFO可以容纳的字节数
* @param {FSpim} *instance_p
*/
static fsize_t FSpimGetRxRound(FSpim *instance_p)
{
fsize_t data_width = instance_p->config.n_bytes;
uintptr base_addr = instance_p->config.base_addr;
fsize_t rx_left_round = (fsize_t)(instance_p->rx_buff_end - instance_p->rx_buff) / data_width;
FSPIM_DEBUG("left round %d, rx level %d", rx_left_round, FSpimGetRxFifoLevel(base_addr));
return min(rx_left_round, (fsize_t)FSpimGetRxFifoLevel(base_addr));
}
/**
* @name: FSpimFifoRx
* @msg: 利用Fifo进行接收
* @return {无}
* @param {FSpim} *instance_p
*/
void FSpimFifoRx(FSpim *instance_p)
{
FASSERT(instance_p);
fsize_t rx_round = FSpimGetRxRound(instance_p);
FSPIM_DEBUG("rx round: %d", rx_round);
uintptr base_addr = instance_p->config.base_addr;
u32 data_width = instance_p->config.n_bytes;
u16 data;
while (rx_round)
{
data = FSpimReadData(base_addr);
if ((fsize_t)(instance_p->rx_buff_end - instance_p->length))
{
if (FSPIM_1_BYTE == data_width)
{
/*
* Data Transfer Width is Byte (8 bit).
*/
*(u8 *)(instance_p->rx_buff) = (u8)data;
FSPIM_DEBUG(" recv 0x%x", *(u8 *)(instance_p->rx_buff));
}
else if (FSPIM_2_BYTE == data_width)
{
/*
* Data Transfer Width is Half Word (16 bit).
*/
*(u16 *)(instance_p->rx_buff) = (u16)data;
FSPIM_DEBUG(" recv 0x%x", *(u16 *)(instance_p->rx_buff));
}
else
{
FASSERT(0);
}
}
instance_p->rx_buff += data_width;
rx_round--;
}
return;
}
/**
* @name: FSpimTransferPollFifo
* @msg: 先发送后接收数据 (阻塞处理)利用Fifo进行处理
* @return {FError} FSPIM_SUCCESS表示处理成功其它返回值表示处理失败
* @param {FSpim} *instance_p 驱动控制数据
* @param {void} *tx_buf 写缓冲区可以为空为空时表示只关注读数据此时驱动会发送0xff读数据
* @param {void} *rx_buf 读缓冲区, 可以为空为空时表示值关注写数据此时SPI总线上返回的数据会被抛弃
* @param {fsize_t} len 进行传输的长度如果tx_buf或者rx_buf不为空则两个buf的长度必须为len
- 使用此函数前需要确保FSPIM驱动初始化成功
- 从函数不会使用中断会按照TX FIFO的深度进行传输每次发送填满TX FIFO后触发发送/接收动作
*/
FError FSpimTransferPollFifo(FSpim *instance_p, const void *tx_buf, void *rx_buf, fsize_t len)
{
FASSERT(instance_p);
u32 reg_val;
uintptr base_addr = instance_p->config.base_addr;
u32 data_width = instance_p->config.n_bytes;
u32 tx_level;
FError ret = FSPIM_SUCCESS;
if (FT_COMPONENT_IS_READY != instance_p->is_ready)
{
FSPIM_ERROR("The device is not initialized!!!");
return FSPIM_ERR_NOT_READY;
}
FSpimSetEnable(base_addr, FALSE);
reg_val = FSpimGetCtrlR0(base_addr);
reg_val &= ~FSPIM_CTRL_R0_DFS_MASK;
reg_val |= FSPIM_CTRL_R0_DFS((data_width << 3) - 1);
reg_val &= ~FSPIM_CTRL_R0_TMOD_MASK;
if (tx_buf && rx_buf)
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_TX);
}
else if (rx_buf)
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_ONLY);
}
else
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_TX);
}
FSpimSetCtrlR0(base_addr, reg_val);
FSpimMaskIrq(base_addr, FSPIM_IMR_ALL_BITS);
instance_p->length = len;
instance_p->tx_buff = tx_buf;
instance_p->tx_buff_end = tx_buf + len;
instance_p->rx_buff = rx_buf;
instance_p->rx_buff_end = rx_buf + len;
FSPIM_DEBUG("tx buff@%p-%d, rx buff@%p-%d",
instance_p->tx_buff, len,
instance_p->rx_buff, len);
FSpimSetEnable(base_addr, TRUE);
do
{
FSpimFifoTx(instance_p);
FSpimFifoRx(instance_p);
}
while (instance_p->rx_buff_end > instance_p->rx_buff);
return ret;
}
/**
* @name: FSpimTransferByInterrupt
* @msg: 配置并打开spim中断传输利用Fifo进行处理
* @return {FError} FSPIM_SUCCESS表示成功打开中断其它返回值表示失败
* @param {FSpim} *instance_p 驱动控制数据
* @param {void} *tx_buf 写缓冲区
* @param {void} *rx_buf 读缓冲区
* @param {fsize_t} len 读写缓冲区长度 (必须相等)
*/
FError FSpimTransferByInterrupt(FSpim *instance_p, const void *tx_buf, void *rx_buf, fsize_t len)
{
FASSERT(instance_p);
u32 reg_val;
uintptr base_addr = instance_p->config.base_addr;
u32 data_width = instance_p->config.n_bytes;
u32 tx_level;
if (FT_COMPONENT_IS_READY != instance_p->is_ready)
{
FSPIM_ERROR("The device is not initialized!!!");
return FSPIM_ERR_NOT_READY;
}
FSpimSetEnable(base_addr, FALSE);
reg_val = FSpimGetCtrlR0(base_addr);
reg_val &= ~FSPIM_CTRL_R0_DFS_MASK;
reg_val |= FSPIM_CTRL_R0_DFS((data_width << 3) - 1);
reg_val &= ~FSPIM_CTRL_R0_TMOD_MASK;
if (tx_buf && rx_buf)
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_TX);
}
else if (rx_buf)
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_ONLY);
}
else
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_TX);
}
FSpimSetCtrlR0(base_addr, reg_val);
FSpimMaskIrq(base_addr, FSPIM_IMR_ALL_BITS);
instance_p->length = len;
instance_p->tx_buff = tx_buf;
instance_p->tx_buff_end = instance_p->tx_buff + len;
instance_p->rx_buff = rx_buf;
instance_p->rx_buff_end = instance_p->rx_buff + len;
/* 设置中断触发的时机fifo填满一半或者所有的数据填完 */
tx_level = min(instance_p->tx_fifo_len / 2, instance_p->length / data_width);
FSpimSetTxFifoThreshold(base_addr, tx_level);
FSpimUmaskIrq(base_addr, FSPIM_IMR_TXEIS | FSPIM_IMR_TXOIS | FSPIM_IMR_RXUIS | FSPIM_IMR_RXOIS);
FSpimSetEnable(base_addr, TRUE);
return FSPIM_SUCCESS;
}
#if defined(FSPIM_VERSION_2) /* E2000 */
/**
* @name: FSpimTransferDMA
* @msg: 启动SPIM DMA数据传输
* @return {FError} FSPIM_SUCCESS表示启动DMA传输成功其它值表示失败
* @param {FSpim} *instance_p, 驱动控制数据
* @param {boolean} tx, TRUE: 启动发送DMA
* @param {boolean} rx, TRUE: 启动接收DMA
*/
FError FSpimTransferDMA(FSpim *instance_p, boolean tx, boolean rx)
{
FASSERT(instance_p);
u32 reg_val;
uintptr base_addr = instance_p->config.base_addr;
u32 data_width = instance_p->config.n_bytes;
if (FT_COMPONENT_IS_READY != instance_p->is_ready)
{
FSPIM_ERROR("device is not yet initialized!!!");
return FSPIM_ERR_NOT_READY;
}
FSpimSetEnable(base_addr, FALSE);
/* set up spim transfer mode */
reg_val = FSpimGetCtrlR0(base_addr);
reg_val &= ~FSPIM_CTRL_R0_DFS_MASK;
reg_val |= FSPIM_CTRL_R0_DFS((data_width << 3) - 1);
reg_val &= ~FSPIM_CTRL_R0_TMOD_MASK;
if (tx && rx)
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_TX);
}
else if (rx)
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_ONLY);
}
else
{
reg_val |= FSPIM_CTRL_R0_TMOD(FSPIM_TMOD_RX_TX);
}
FSpimSetCtrlR0(base_addr, reg_val);
FSpimMaskIrq(base_addr, FSPIM_IMR_ALL_BITS); /* mask all interrupts */
FSpimSetEnable(base_addr, TRUE);
/* enable DMA tx / rx */
reg_val = FSPIM_READ_REG32(base_addr, FSPIM_DMA_CR_OFFSET);
if (tx)
{
reg_val |= FSPIM_DMA_CR_TDMAE;
}
else
{
reg_val &= ~FSPIM_DMA_CR_TDMAE;
}
if (rx)
{
reg_val |= FSPIM_DMA_CR_RDMAE;
}
else
{
reg_val &= ~FSPIM_DMA_CR_RDMAE;
}
FSPIM_WRITE_REG32(base_addr, FSPIM_DMA_CR_OFFSET, reg_val);
FSpimSelSlaveDev(base_addr, instance_p->config.slave_dev_id);
return FSPIM_SUCCESS;
}
/**
* @name: FSpimSetChipSelection
* @msg: 设置片选信号
* @return {NONE}
* @param {FSpim} *instance_p, 驱动控制数据
* @param {boolean} on, TRUE: 片选打开, FALSE: 片选关闭
*/
void FSpimSetChipSelection(FSpim *instance_p, boolean on)
{
FASSERT(instance_p);
u32 reg_val;
FSpimSlaveDevice cs_n = instance_p->config.slave_dev_id;
uintptr base_addr = instance_p->config.base_addr;
if (FT_COMPONENT_IS_READY != instance_p->is_ready)
{
FSPIM_ERROR("device is not yet initialized!!!");
return;
}
reg_val = FSPIM_READ_REG32(base_addr, FSPIM_CS_OFFSET);
if (on)
{
reg_val |= FSPIM_CHIP_SEL_EN((u32)cs_n);
reg_val |= FSPIM_CHIP_SEL((u32)cs_n);
}
else
{
reg_val &= ~FSPIM_CHIP_SEL_EN((u32)cs_n);
reg_val &= ~FSPIM_CHIP_SEL((u32)cs_n);
}
FSPIM_WRITE_REG32(base_addr, FSPIM_CS_OFFSET, reg_val);
return;
}
#endif
/**
* @name: FSpimErrorToMessage
* @msg: 获取FSPIM模块错误码对应的错误信息
* @return {const char *}, 错误码信息NULL表示失败
* @param {FError} error, FSPIM输入错误码
*/
const char *FSpimErrorToMessage(FError error)
{
const char *msg = NULL;
if (FSPIM_SUCCESS != error && (FSPIM_ERR_CODE_PREFIX != error & (FT_ERRCODE_SYS_MODULE_MASK | FT_ERRCODE_SUB_MODULE_MASK)))
{
/* if input error do not belong to this module */
return msg;
}
u32 index = error & FT_ERRCODE_TAIL_VALUE_MASK;
if (index < FSPIM_NUM_OF_ERR_CODE)
{
msg = FSPIM_ERROR_CODE_MSG[index];
}
return msg;
}