2021-03-14 15:33:55 +08:00

415 lines
10 KiB
C

/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2020-07-04 thread-liu the first version
*/
#include "board.h"
#if defined(BSP_USING_SDCARD)
#include <dfs_fs.h>
#define DRV_DEBUG
//#define SDMMC_TX_DUMP
//#define SDMMC_RX_DUMP
#define LOG_TAG "drv.sdmmc"
#include <drv_log.h>
static SD_HandleTypeDef SDCARD_Handler = {0};
static HAL_SD_CardInfoTypeDef SDCardInfo = {0};
struct stm32_sd
{
struct rt_device sdcard;
struct rt_semaphore sd_lock;
volatile rt_uint8_t write_flage;
volatile rt_uint8_t read_flage;
volatile rt_base_t level;
};
static struct stm32_sd sd_device;
#define SD_TIMEOUT ((uint32_t)30 * 1000)
#define DETECT_PIN GET_PIN(G, 1)
#define LDO_PIN GET_PIN(F, 14)
struct rt_completion tx_comp;
struct rt_completion rx_comp;
/* SYSRAM SDMMC1/2 accesses */
#define SDIO_BUFF_SIZE 512
#define SDCARD_ADDR 0x2FFC0000
#if defined(__CC_ARM) || defined(__CLANG_ARM)
__attribute__((at(SDCARD_ADDR))) static rt_uint32_t cache_buf[SDIO_BUFF_SIZE];
#elif defined ( __GNUC__ )
static rt_uint32_t cache_buf[SDIO_BUFF_SIZE] __attribute__((section(".SdCardSection")));
#elif defined(__ICCARM__)
#pragma location = SDCARD_ADDR
__no_init static rt_uint32_t cache_buf[SDIO_BUFF_SIZE];
#endif
#if defined(SDMMC_RX_DUMP) || defined(SDMMC_TX_DUMP)
#define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ')
static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen)
{
unsigned char *buf = (unsigned char *)ptr;
int i, j;
for (i = 0; i < buflen; i += 16)
{
rt_kprintf("%08X: ", i);
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%02X ", buf[i + j]);
else
rt_kprintf(" ");
rt_kprintf(" ");
for (j = 0; j < 16; j++)
if (i + j < buflen)
rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.');
rt_kprintf("\n");
}
}
#endif
static rt_err_t rt_hw_sd_is_detected(void)
{
return rt_pin_read(DETECT_PIN);
}
static rt_err_t rt_hw_sd_init(void)
{
/* sd ldo*/
rt_pin_mode(LDO_PIN, PIN_MODE_OUTPUT);
/* sd detect */
rt_pin_mode(DETECT_PIN, PIN_MODE_INPUT_PULLUP);
/* judge we have a sd card */
if (rt_hw_sd_is_detected() != 0x00)
{
LOG_E("can't find sd card!");
return RT_ERROR;
}
SDCARD_Handler.Instance = SDMMC1;
HAL_SD_DeInit(&SDCARD_Handler);
/* if CLKDIV = 0 then SDMMC Clock frequency = SDMMC Kernel Clock
else SDMMC Clock frequency = SDMMC Kernel Clock / [2 * CLKDIV].
SDMMC Kernel Clock = 99MHz, SDMMC Clock frequency = 50MHz */
SDCARD_Handler.Init.ClockDiv = 1;
SDCARD_Handler.Init.ClockPowerSave = SDMMC_CLOCK_POWER_SAVE_DISABLE;
SDCARD_Handler.Init.ClockEdge = SDMMC_CLOCK_EDGE_FALLING;
SDCARD_Handler.Init.HardwareFlowControl = SDMMC_HARDWARE_FLOW_CONTROL_DISABLE;
SDCARD_Handler.Init.BusWide = SDMMC_BUS_WIDE_4B;
if (HAL_SD_Init(&SDCARD_Handler) != RT_EOK)
{
LOG_E("sd device init error!");
return RT_ERROR;
}
if (HAL_SD_ConfigWideBusOperation(&SDCARD_Handler, SDMMC_BUS_WIDE_4B) != RT_EOK)
{
LOG_E("sd bus config error!");
return RT_ERROR;
}
if (HAL_SD_GetCardInfo(&SDCARD_Handler, &SDCardInfo) != RT_EOK)
{
LOG_E("sd get card info error!");
return RT_ERROR;
}
rt_thread_mdelay(100);
if(HAL_SD_GetCardState(&SDCARD_Handler) != HAL_SD_CARD_TRANSFER)
{
LOG_E("sd get card state error!");
return RT_ERROR;
}
return RT_EOK;
}
static void rt_hw_sd_deinit(void)
{
HAL_SD_DeInit(&SDCARD_Handler);
}
static rt_err_t sdcard_wait_ok(void)
{
rt_uint32_t tick_start = 0;
tick_start = rt_tick_get();
while ((rt_tick_get() - tick_start) < SD_TIMEOUT)
{
if (HAL_SD_GetCardState(&SDCARD_Handler) == HAL_SD_CARD_TRANSFER)
{
return HAL_OK;
}
}
return HAL_ERROR;
}
void HAL_SD_DriveTransceiver_1_8V_Callback(FlagStatus status)
{
if (status == SET)
{
rt_pin_write(LDO_PIN, PIN_HIGH);
}
else
{
rt_pin_write(LDO_PIN, PIN_LOW);
}
}
static rt_err_t rt_sdcard_init(rt_device_t dev)
{
RT_ASSERT(dev != RT_NULL);
struct stm32_sd *sd = (struct stm32_sd *)dev;
if (rt_sem_init(&sd->sd_lock, "sdlock", 1, RT_IPC_FLAG_FIFO) != RT_EOK)
{
LOG_E("init sd lock semaphore failed\n");
}
return RT_EOK;
}
static rt_err_t rt_sdcard_open(rt_device_t dev, rt_uint16_t oflag)
{
RT_ASSERT(dev != RT_NULL);
return RT_EOK;
}
static rt_err_t rt_sdcard_close(rt_device_t dev)
{
RT_ASSERT(dev != RT_NULL);
return RT_EOK;
}
/**
* @brief Reads Sector(s)
* @param dev : sd dev
* @param sector: Sector address (LBA) Data buffer to store read data
* @param *buffer: Data buffer to store read data
* @param count: Number of sectors to read (1..128)
* @retval DRESULT: Operation result
*/
static rt_size_t rt_sdcard_read(rt_device_t dev, rt_off_t sector, void *buffer, rt_size_t count)
{
RT_ASSERT(dev != RT_NULL);
struct stm32_sd *sd = (struct stm32_sd *)dev;
rt_uint8_t ret = RT_EOK;
volatile uint32_t tickstart = 0;
sd->read_flage = 0;
rt_memset(cache_buf, 0x00, BLOCKSIZE * count);
ret = sdcard_wait_ok();
if (ret != RT_EOK)
{
LOG_D("sdmmc busy!");
return 0;
}
rt_sem_take(&sd->sd_lock, RT_WAITING_FOREVER);
ret = HAL_SD_ReadBlocks_DMA(&SDCARD_Handler, (rt_uint8_t *)cache_buf, (uint32_t)sector, count);
rt_sem_release(&sd->sd_lock);
/* Wait that writing process is completed or a timeout occurs */
tickstart = rt_tick_get();
if (ret == HAL_OK)
{
while ((sd->read_flage == 0) && (rt_tick_get() - tickstart) < SD_TIMEOUT)
{
}
/* over time */
if (sd->read_flage == 0)
{
return 0;
}
else
{
sd->read_flage = 0;
tickstart = rt_tick_get();
while ((rt_tick_get() - tickstart) < SD_TIMEOUT)
{
if (sdcard_wait_ok() == RT_EOK)
{
sd->level=rt_hw_interrupt_disable();
rt_memcpy((rt_uint8_t *)(buffer), cache_buf, BLOCKSIZE * count);
rt_hw_interrupt_enable(sd->level);
#if defined(SDMMC_RX_DUMP)
rt_kprintf("\nsd rx: \n");
dump_hex(cache_buf, BLOCKSIZE * count);
#endif
return count;
}
}
}
}
return 0;
}
/**
* @brief Writes block(s) to a specified address in an SD card, in DMA mode.
* @param dev SD device
* @param sector Block index from where data is to be written P
* @param *buffer Pointer to the buffer that will contain the data to transmit
* @param count Number of SD blocks to write
* @retval BSP status
*/
static rt_size_t rt_sdcard_write(rt_device_t dev, rt_off_t sector, const void *buffer, rt_size_t count)
{
RT_ASSERT(dev != RT_NULL);
struct stm32_sd *sd = (struct stm32_sd *)dev;
rt_uint32_t i = 0;
rt_uint8_t ret = RT_EOK;
for (i = 0; i < count; i++)
{
sd->level = rt_hw_interrupt_disable();
rt_memset(cache_buf, 0x00, BLOCKSIZE);
rt_memcpy(cache_buf, (rt_uint32_t *)((uintptr_t)buffer + BLOCKSIZE * i), BLOCKSIZE);
rt_hw_interrupt_enable(sd->level);
#if defined(SDMMC_TX_DUMP)
rt_kprintf("\nsd tx: \n");
dump_hex(cache_buf, BLOCKSIZE);
#endif
ret = sdcard_wait_ok();
if (ret != RT_EOK)
{
LOG_D("sdmmc busy!");
return 0;
}
rt_completion_init(&tx_comp);
ret = HAL_SD_WriteBlocks_DMA(&SDCARD_Handler, (rt_uint8_t *)cache_buf, (rt_uint32_t)(sector + i), 1);
if (ret != HAL_OK)
{
rt_kprintf("sd write error!\n");
return 0;
}
rt_completion_wait(&tx_comp,RT_WAITING_FOREVER);
}
return count;
}
static rt_err_t rt_sdcard_control(rt_device_t dev, int cmd, void *args)
{
RT_ASSERT(dev != RT_NULL);
if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME)
{
struct rt_device_blk_geometry *geometry;
geometry = (struct rt_device_blk_geometry *)args;
geometry->bytes_per_sector = 512;
geometry->block_size = SDCARD_Handler.SdCard.BlockSize;
geometry->sector_count = SDCARD_Handler.SdCard.BlockNbr;
}
return RT_EOK;
}
void SDMMC1_IRQHandler(void)
{
rt_interrupt_enter();
HAL_SD_IRQHandler(&SDCARD_Handler);
rt_interrupt_leave();
}
void HAL_SD_RxCpltCallback(SD_HandleTypeDef *hsd)
{
if (hsd->Instance == SDCARD_Handler.Instance)
{
sd_device.read_flage = 1;
}
}
void HAL_SD_TxCpltCallback(SD_HandleTypeDef *hsd)
{
if (hsd->Instance == SDCARD_Handler.Instance)
{
rt_completion_done(&tx_comp);
}
}
int rt_hw_sdcard_init(void)
{
if (rt_hw_sd_init() != RT_EOK)
{
rt_hw_sd_deinit();
LOG_E("sdcard init failed");
return RT_ERROR;
}
/* register sdcard device */
sd_device.sdcard.type = RT_Device_Class_Block;
sd_device.sdcard.init = rt_sdcard_init;
sd_device.sdcard.open = rt_sdcard_open;
sd_device.sdcard.close = rt_sdcard_close;
sd_device.sdcard.read = rt_sdcard_read;
sd_device.sdcard.write = rt_sdcard_write;
sd_device.sdcard.control = rt_sdcard_control;
/* no private */
sd_device.sdcard.user_data = &SDCardInfo;
rt_device_register(&sd_device.sdcard, "sd_card", RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE);
LOG_I("sd card init success!");
return RT_EOK;
}
INIT_DEVICE_EXPORT(rt_hw_sdcard_init);
#if defined(BSP_USING_SDCARD_FS)
int mnt_init(void)
{
rt_device_t sd_dev = RT_NULL;
LOG_I("init sd card file system.");
#if defined(SDMMC_RX_DUMP) || defined(SDMMC_TX_DUMP)
rt_thread_delay(3000);
#else
rt_thread_delay(RT_TICK_PER_SECOND);
#endif
sd_dev = rt_device_find("sd_card");
if (sd_dev == RT_NULL)
{
LOG_E("can't find sd deivce name!");
return RT_ERROR;
}
if (dfs_mount("sd_card", "/", "elm", 0, 0) != 0)
{
rt_kprintf("file system mount failed!\n");
}
else
{
rt_kprintf("file system mount success!\n");
}
return 0;
}
INIT_APP_EXPORT(mnt_init);
#endif
#endif