/* * Copyright (c) 2006-2022, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2021-09-23 charlown first version * 2022-10-14 hg0720 the first version which add from wch */ #include #include #include #include #include #ifdef BSP_USING_PWM #define LOG_TAG "drv.pwm" #include #ifndef ITEM_NUM #define ITEM_NUM(items) sizeof(items) / sizeof(items[0]) #endif #define MAX_COUNTER 65535 #define MIN_COUNTER 2 #define MIN_PULSE 2 struct rtdevice_pwm_device { struct rt_device_pwm parent; TIM_TypeDef* periph; rt_uint8_t channel[4]; char* name; }; void ch32_tim_clock_init(TIM_TypeDef* timx) { if (timx == TIM1) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); } if (timx == TIM2) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); } if (timx == TIM3) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); } if (timx == TIM4) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE); } } rt_uint32_t ch32_tim_clock_get(TIM_TypeDef* timx) { RCC_ClocksTypeDef RCC_Clocks; RCC_GetClocksFreq(&RCC_Clocks); /*tim1~4 all in HCLK*/ return RCC_Clocks.HCLK_Frequency; } struct rt_hwtimer_info hwtimer_info1 = { .maxfreq = 1000000, .minfreq = 2000, .maxcnt = 0xFFFF, .cntmode = HWTIMER_CNTMODE_UP, }; struct rt_hwtimer_info hwtimer_info2 = { .maxfreq = 1000000, .minfreq = 2000, .maxcnt = 0xFFFF, .cntmode = HWTIMER_CNTMODE_UP, }; struct rt_hwtimer_info hwtimer_info3 = { .maxfreq = 1000000, .minfreq = 2000, .maxcnt = 0xFFFF, .cntmode = HWTIMER_CNTMODE_UP, }; struct rt_hwtimer_info hwtimer_info4 = { .maxfreq = 1000000, .minfreq = 2000, .maxcnt = 0xFFFF, .cntmode = HWTIMER_CNTMODE_UP, }; struct rt_hwtimer_info* ch32_hwtimer_info_config_get(TIM_TypeDef* timx) { struct rt_hwtimer_info* info = RT_NULL; if (timx == TIM1) { info = &hwtimer_info1; } else if (timx == TIM2) { info = &hwtimer_info2; } else if (timx == TIM3) { info = &hwtimer_info3; } else if (timx == TIM4) { info = &hwtimer_info4; } return info; } void ch32_pwm_io_init(TIM_TypeDef* timx, rt_uint8_t channel) { GPIO_InitTypeDef GPIO_InitStructure; if (timx == TIM1) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); if (channel == TIM_Channel_1) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } if (channel == TIM_Channel_2) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } if (channel == TIM_Channel_3) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } if (channel == TIM_Channel_4) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } } if (timx == TIM2) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); if (channel == TIM_Channel_1) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } if (channel == TIM_Channel_2) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } if (channel == TIM_Channel_3) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } if (channel == TIM_Channel_4) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } } if (timx == TIM3) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); if (channel == TIM_Channel_1) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } if (channel == TIM_Channel_2) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOA, &GPIO_InitStructure); } if (channel == TIM_Channel_3) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); } if (channel == TIM_Channel_4) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); } } if (timx == TIM4) { RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); if (channel == TIM_Channel_1) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); } if (channel == TIM_Channel_2) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); } if (channel == TIM_Channel_3) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); } if (channel == TIM_Channel_4) { GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_Init(GPIOB, &GPIO_InitStructure); } } } /* * channel = 0xFF: the channel is not use. */ struct rtdevice_pwm_device pwm_device_list[] = { #ifdef BSP_USING_TIM1_PWM { .periph = TIM1, .name = "pwm1", #ifdef BSP_USING_TIM1_PWM_CH1 .channel[0] = TIM_Channel_1, #else .channel[0] = 0xFF, #endif #ifdef BSP_USING_TIM1_PWM_CH2 .channel[1] = TIM_Channel_2, #else .channel[1] = 0xFF, #endif #ifdef BSP_USING_TIM1_PWM_CH3 .channel[2] = TIM_Channel_3, #else .channel[2] = 0xFF, #endif #ifdef BSP_USING_TIM1_PWM_CH4 .channel[3] = TIM_Channel_4, #else .channel[3] = 0xFF, #endif }, #endif /* BSP_USING_TIM1_PWM */ #ifdef BSP_USING_TIM2_PWM { .periph = TIM2, .name = "pwm2", #ifdef BSP_USING_TIM2_PWM_CH1 .channel[0] = TIM_Channel_1, #else .channel[0] = 0xFF, #endif #ifdef BSP_USING_TIM2_PWM_CH2 .channel[1] = TIM_Channel_2, #else .channel[1] = 0xFF, #endif #ifdef BSP_USING_TIM2_PWM_CH3 .channel[2] = TIM_Channel_3, #else .channel[2] = 0xFF, #endif #ifdef BSP_USING_TIM2_PWM_CH4 .channel[3] = TIM_Channel_4, #else .channel[3] = 0xFF, #endif }, #endif /* BSP_USING_TIM2_PWM */ #ifdef BSP_USING_TIM3_PWM { .periph = TIM3, .name = "pwm3", #ifdef BSP_USING_TIM3_PWM_CH1 .channel[0] = TIM_Channel_1, #else .channel[0] = 0xFF, #endif #ifdef BSP_USING_TIM3_PWM_CH2 .channel[1] = TIM_Channel_2, #else .channel[1] = 0xFF, #endif #ifdef BSP_USING_TIM3_PWM_CH3 .channel[2] = TIM_Channel_3, #else .channel[2] = 0xFF, #endif #ifdef BSP_USING_TIM3_PWM_CH4 .channel[3] = TIM_Channel_4, #else .channel[3] = 0xFF, #endif }, #endif /* BSP_USING_TIM3_PWM */ #ifdef BSP_USING_TIM4_PWM { .periph = TIM4, .name = "pwm4", #ifdef BSP_USING_TIM4_PWM_CH1 .channel[0] = TIM_Channel_1, #else .channel[0] = 0xFF, #endif #ifdef BSP_USING_TIM4_PWM_CH2 .channel[1] = TIM_Channel_2, #else .channel[1] = 0xFF, #endif #ifdef BSP_USING_TIM4_PWM_CH3 .channel[2] = TIM_Channel_3, #else .channel[2] = 0xFF, #endif #ifdef BSP_USING_TIM4_PWM_CH4 .channel[3] = TIM_Channel_4, #else .channel[3] = 0xFF, #endif }, #endif /* BSP_USING_TIM4_PWM */ }; static rt_err_t ch32_pwm_device_enable(struct rt_device_pwm* device, struct rt_pwm_configuration* configuration, rt_bool_t enable) { struct rtdevice_pwm_device* pwm_device; rt_uint32_t channel_index; rt_uint16_t ccx_state; pwm_device = (struct rtdevice_pwm_device*)device; channel_index = configuration->channel; if (enable == RT_TRUE) { ccx_state = TIM_CCx_Enable; } else { ccx_state = TIM_CCx_Disable; } if (channel_index <= 4 && channel_index > 0) { if (pwm_device->channel[channel_index - 1] == 0xFF) { return RT_EINVAL; } TIM_CCxCmd(pwm_device->periph, pwm_device->channel[channel_index - 1], ccx_state); } else { return RT_EINVAL; } TIM_Cmd(pwm_device->periph, ENABLE); return RT_EOK; } static rt_err_t ch32_pwm_device_get(struct rt_device_pwm* device, struct rt_pwm_configuration* configuration) { struct rtdevice_pwm_device* pwm_device; rt_uint32_t arr_counter, ccr_counter, prescaler, sample_freq; rt_uint32_t channel_index; rt_uint32_t tim_clock; pwm_device = (struct rtdevice_pwm_device*)device; tim_clock = ch32_tim_clock_get(pwm_device->periph); channel_index = configuration->channel; arr_counter = pwm_device->periph->ATRLR + 1; prescaler = pwm_device->periph->PSC + 1; sample_freq = (tim_clock / prescaler) / arr_counter; /* unit:ns */ configuration->period = 1000000000 / sample_freq; if (channel_index == 1) { ccr_counter = pwm_device->periph->CH1CVR + 1; configuration->pulse = ((ccr_counter * 100) / arr_counter) * configuration->period / 100; } else if (channel_index == 2) { ccr_counter = pwm_device->periph->CH2CVR + 1; configuration->pulse = ((ccr_counter * 100) / arr_counter) * configuration->period / 100; } else if (channel_index == 3) { ccr_counter = pwm_device->periph->CH3CVR + 1; configuration->pulse = ((ccr_counter * 100) / arr_counter) * configuration->period / 100; } else if (channel_index == 4) { ccr_counter = pwm_device->periph->CH4CVR + 1; configuration->pulse = ((ccr_counter * 100) / arr_counter) * configuration->period / 100; } else { return RT_EINVAL; } return RT_EOK; } static rt_err_t ch32_pwm_device_set(struct rt_device_pwm* device, struct rt_pwm_configuration* configuration) { struct rtdevice_pwm_device* pwm_device; rt_uint32_t arr_counter, ccr_counter, prescaler, sample_freq; rt_uint32_t channel_index; rt_uint32_t tim_clock; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitType; TIM_OCInitTypeDef TIM_OCInitType; pwm_device = (struct rtdevice_pwm_device*)device; tim_clock = ch32_tim_clock_get(pwm_device->periph); channel_index = configuration->channel; /* change to freq, unit:Hz */ sample_freq = 1000000000 / configuration->period; /* counter = (tim_clk / prescaler) / sample_freq */ /* normally, tim_clk is not need div, if arr_counter over 65536, need div. */ prescaler = 1; arr_counter = (tim_clock / prescaler) / sample_freq; if (arr_counter > MAX_COUNTER) { /* need div tim_clock * and round up the prescaler value. * (tim_clock >> 16) = tim_clock / 65536 */ if ((tim_clock >> 16) % sample_freq == 0) prescaler = (tim_clock >> 16) / sample_freq; else prescaler = (tim_clock >> 16) / sample_freq + 1; /* counter = (tim_clk / prescaler) / sample_freq */ arr_counter = (tim_clock / prescaler) / sample_freq; } /* ccr_counter = duty cycle * arr_counter */ ccr_counter = (configuration->pulse * 100 / configuration->period) * arr_counter / 100; /* check arr_counter > 1, cxx_counter > 1 */ if (arr_counter < MIN_COUNTER) { arr_counter = MIN_COUNTER; } if (ccr_counter < MIN_PULSE) { ccr_counter = MIN_PULSE; } /* TMRe base configuration */ TIM_TimeBaseStructInit(&TIM_TimeBaseInitType); TIM_TimeBaseInitType.TIM_Period = arr_counter - 1; TIM_TimeBaseInitType.TIM_Prescaler = prescaler - 1; TIM_TimeBaseInitType.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseInitType.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(pwm_device->periph, &TIM_TimeBaseInitType); TIM_OCStructInit(&TIM_OCInitType); TIM_OCInitType.TIM_OCMode = TIM_OCMode_PWM1; TIM_OCInitType.TIM_OutputState = TIM_OutputState_Enable; TIM_OCInitType.TIM_Pulse = ccr_counter - 1; TIM_OCInitType.TIM_OCPolarity = TIM_OCPolarity_High; if (channel_index == 1) { TIM_OC1Init(pwm_device->periph, &TIM_OCInitType); TIM_OC1PreloadConfig(pwm_device->periph, TIM_OCPreload_Disable); } else if (channel_index == 2) { TIM_OC2Init(pwm_device->periph, &TIM_OCInitType); TIM_OC2PreloadConfig(pwm_device->periph, TIM_OCPreload_Disable); } else if (channel_index == 3) { TIM_OC3Init(pwm_device->periph, &TIM_OCInitType); TIM_OC3PreloadConfig(pwm_device->periph, TIM_OCPreload_Disable); } else if (channel_index == 4) { TIM_OC4Init(pwm_device->periph, &TIM_OCInitType); TIM_OC4PreloadConfig(pwm_device->periph, TIM_OCPreload_Disable); } else { return RT_EINVAL; } TIM_ARRPreloadConfig(pwm_device->periph, ENABLE); TIM_CtrlPWMOutputs(pwm_device->periph, ENABLE); return RT_EOK; } static rt_err_t drv_pwm_control(struct rt_device_pwm* device, int cmd, void* arg) { struct rt_pwm_configuration* configuration; configuration = (struct rt_pwm_configuration*)arg; switch (cmd) { case PWM_CMD_ENABLE: return ch32_pwm_device_enable(device, configuration, RT_TRUE); case PWM_CMD_DISABLE: return ch32_pwm_device_enable(device, configuration, RT_FALSE); case PWM_CMD_SET: return ch32_pwm_device_set(device, configuration); case PWM_CMD_GET: return ch32_pwm_device_get(device, configuration); default: return RT_EINVAL; } } static struct rt_pwm_ops pwm_ops = { .control = drv_pwm_control }; static int rt_hw_pwm_init(void) { int result = RT_EOK; int index = 0; int channel_index; for (index = 0; index < ITEM_NUM(pwm_device_list); index++) { ch32_tim_clock_init(pwm_device_list[index].periph); for (channel_index = 0; channel_index < sizeof(pwm_device_list[index].channel); channel_index++) { if (pwm_device_list[index].channel[channel_index] != 0xFF) { ch32_pwm_io_init(pwm_device_list[index].periph, pwm_device_list[index].channel[channel_index]); } } if (rt_device_pwm_register(&pwm_device_list[index].parent, pwm_device_list[index].name, &pwm_ops, RT_NULL) == RT_EOK) { LOG_D("%s register success", pwm_device_list[index].name); } else { LOG_D("%s register failed", pwm_device_list[index].name); result = -RT_ERROR; } } return result; } INIT_BOARD_EXPORT(rt_hw_pwm_init); #endif /* BSP_USING_PWM */