/* * Copyright (c) 2006-2022, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-11-5 SummerGift first version * 2018-12-11 greedyhao Porting for stm32f7xx * 2019-01-03 zylx modify DMA initialization and spixfer function * 2020-01-15 whj4674672 Porting for stm32h7xx * 2020-06-18 thread-liu Porting for stm32mp1xx * 2020-10-14 Dozingfiretruck Porting for stm32wbxx */ #include #include #include "board.h" #ifdef BSP_USING_SPI #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) || defined(BSP_USING_SPI4) || defined(BSP_USING_SPI5) || defined(BSP_USING_SPI6) #include "drv_spi.h" #include "drv_config.h" #include //#define DRV_DEBUG #define LOG_TAG "drv.spi" #include enum { #ifdef BSP_USING_SPI1 SPI1_INDEX, #endif #ifdef BSP_USING_SPI2 SPI2_INDEX, #endif #ifdef BSP_USING_SPI3 SPI3_INDEX, #endif #ifdef BSP_USING_SPI4 SPI4_INDEX, #endif #ifdef BSP_USING_SPI5 SPI5_INDEX, #endif #ifdef BSP_USING_SPI6 SPI6_INDEX, #endif }; static struct stm32_spi_config spi_config[] = { #ifdef BSP_USING_SPI1 SPI1_BUS_CONFIG, #endif #ifdef BSP_USING_SPI2 SPI2_BUS_CONFIG, #endif #ifdef BSP_USING_SPI3 SPI3_BUS_CONFIG, #endif #ifdef BSP_USING_SPI4 SPI4_BUS_CONFIG, #endif #ifdef BSP_USING_SPI5 SPI5_BUS_CONFIG, #endif #ifdef BSP_USING_SPI6 SPI6_BUS_CONFIG, #endif }; static struct stm32_spi spi_bus_obj[sizeof(spi_config) / sizeof(spi_config[0])] = {0}; static rt_err_t stm32_spi_init(struct stm32_spi *spi_drv, struct rt_spi_configuration *cfg) { RT_ASSERT(spi_drv != RT_NULL); RT_ASSERT(cfg != RT_NULL); SPI_HandleTypeDef *spi_handle = &spi_drv->handle; if (cfg->mode & RT_SPI_SLAVE) { spi_handle->Init.Mode = SPI_MODE_SLAVE; } else { spi_handle->Init.Mode = SPI_MODE_MASTER; } if (cfg->mode & RT_SPI_3WIRE) { spi_handle->Init.Direction = SPI_DIRECTION_1LINE; } else { spi_handle->Init.Direction = SPI_DIRECTION_2LINES; } if (cfg->data_width == 8) { spi_handle->Init.DataSize = SPI_DATASIZE_8BIT; spi_handle->TxXferSize = 8; spi_handle->RxXferSize = 8; } else if (cfg->data_width == 16) { spi_handle->Init.DataSize = SPI_DATASIZE_16BIT; } else { return RT_EIO; } if (cfg->mode & RT_SPI_CPHA) { spi_handle->Init.CLKPhase = SPI_PHASE_2EDGE; } else { spi_handle->Init.CLKPhase = SPI_PHASE_1EDGE; } if (cfg->mode & RT_SPI_CPOL) { spi_handle->Init.CLKPolarity = SPI_POLARITY_HIGH; } else { spi_handle->Init.CLKPolarity = SPI_POLARITY_LOW; } spi_handle->Init.NSS = SPI_NSS_SOFT; uint32_t SPI_CLOCK; /* Some series may only have APBPERIPH_BASE, but don't have HAL_RCC_GetPCLK2Freq */ #if defined(APBPERIPH_BASE) SPI_CLOCK = HAL_RCC_GetPCLK1Freq(); #elif defined(APB1PERIPH_BASE) || defined(APB2PERIPH_BASE) /* The SPI clock for H7 cannot be configured with a peripheral bus clock, so it needs to be written separately */ #if defined(SOC_SERIES_STM32H7) /* When the configuration is generated using CUBEMX, the configuration for the SPI clock is placed in the HAL_SPI_Init function. Therefore, it is necessary to initialize and configure the SPI clock to automatically configure the frequency division */ HAL_SPI_Init(spi_handle); SPI_CLOCK = HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_SPI123); #else if ((rt_uint32_t)spi_drv->config->Instance >= APB2PERIPH_BASE) { SPI_CLOCK = HAL_RCC_GetPCLK2Freq(); } else { SPI_CLOCK = HAL_RCC_GetPCLK1Freq(); } #endif /* SOC_SERIES_STM32H7) */ #endif /* APBPERIPH_BASE */ if (cfg->max_hz >= SPI_CLOCK / 2) { spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_2; } else if (cfg->max_hz >= SPI_CLOCK / 4) { spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_4; } else if (cfg->max_hz >= SPI_CLOCK / 8) { spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_8; } else if (cfg->max_hz >= SPI_CLOCK / 16) { spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_16; } else if (cfg->max_hz >= SPI_CLOCK / 32) { spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32; } else if (cfg->max_hz >= SPI_CLOCK / 64) { spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_64; } else if (cfg->max_hz >= SPI_CLOCK / 128) { spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_128; } else { /* min prescaler 256 */ spi_handle->Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; } LOG_D("sys freq: %d, pclk freq: %d, SPI limiting freq: %d, SPI usage freq: %d", #if defined(SOC_SERIES_STM32MP1) HAL_RCC_GetSystemCoreClockFreq(), #else HAL_RCC_GetSysClockFreq(), #endif SPI_CLOCK, cfg->max_hz, SPI_CLOCK / (rt_size_t)pow(2,(spi_handle->Init.BaudRatePrescaler >> 28) + 1)); if (cfg->mode & RT_SPI_MSB) { spi_handle->Init.FirstBit = SPI_FIRSTBIT_MSB; } else { spi_handle->Init.FirstBit = SPI_FIRSTBIT_LSB; } spi_handle->Init.TIMode = SPI_TIMODE_DISABLE; spi_handle->Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; spi_handle->State = HAL_SPI_STATE_RESET; #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) || defined(SOC_SERIES_STM32WB) spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE; #elif defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32MP1) spi_handle->Init.Mode = SPI_MODE_MASTER; spi_handle->Init.NSS = SPI_NSS_SOFT; spi_handle->Init.NSSPMode = SPI_NSS_PULSE_DISABLE; spi_handle->Init.NSSPolarity = SPI_NSS_POLARITY_LOW; spi_handle->Init.CRCPolynomial = 7; spi_handle->Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN; spi_handle->Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN; spi_handle->Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE; spi_handle->Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE; spi_handle->Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE; spi_handle->Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_ENABLE; spi_handle->Init.IOSwap = SPI_IO_SWAP_DISABLE; spi_handle->Init.FifoThreshold = SPI_FIFO_THRESHOLD_08DATA; #endif if (HAL_SPI_Init(spi_handle) != HAL_OK) { return RT_EIO; } #if defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32F0) \ || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32WB) SET_BIT(spi_handle->Instance->CR2, SPI_RXFIFO_THRESHOLD_HF); #endif /* DMA configuration */ if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) { HAL_DMA_Init(&spi_drv->dma.handle_rx); __HAL_LINKDMA(&spi_drv->handle, hdmarx, spi_drv->dma.handle_rx); /* NVIC configuration for DMA transfer complete interrupt */ HAL_NVIC_SetPriority(spi_drv->config->dma_rx->dma_irq, 0, 0); HAL_NVIC_EnableIRQ(spi_drv->config->dma_rx->dma_irq); } if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) { HAL_DMA_Init(&spi_drv->dma.handle_tx); __HAL_LINKDMA(&spi_drv->handle, hdmatx, spi_drv->dma.handle_tx); /* NVIC configuration for DMA transfer complete interrupt */ HAL_NVIC_SetPriority(spi_drv->config->dma_tx->dma_irq, 1, 0); HAL_NVIC_EnableIRQ(spi_drv->config->dma_tx->dma_irq); } if(spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG || spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) { HAL_NVIC_SetPriority(spi_drv->config->irq_type, 2, 0); HAL_NVIC_EnableIRQ(spi_drv->config->irq_type); } LOG_D("%s init done", spi_drv->config->bus_name); return RT_EOK; } static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message) { HAL_StatusTypeDef state; rt_size_t message_length, already_send_length; rt_uint16_t send_length; rt_uint8_t *recv_buf; const rt_uint8_t *send_buf; RT_ASSERT(device != RT_NULL); RT_ASSERT(device->bus != RT_NULL); RT_ASSERT(device->bus->parent.user_data != RT_NULL); RT_ASSERT(message != RT_NULL); struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus); SPI_HandleTypeDef *spi_handle = &spi_drv->handle; struct stm32_hw_spi_cs *cs = device->parent.user_data; if (message->cs_take && !(device->config.mode & RT_SPI_NO_CS)) { if (device->config.mode & RT_SPI_CS_HIGH) HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET); else HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET); } LOG_D("%s transfer prepare and start", spi_drv->config->bus_name); LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d", spi_drv->config->bus_name, (uint32_t)message->send_buf, (uint32_t)message->recv_buf, message->length); message_length = message->length; recv_buf = message->recv_buf; send_buf = message->send_buf; while (message_length) { /* the HAL library use uint16 to save the data length */ if (message_length > 65535) { send_length = 65535; message_length = message_length - 65535; } else { send_length = message_length; message_length = 0; } /* calculate the start address */ already_send_length = message->length - send_length - message_length; send_buf = (rt_uint8_t *)message->send_buf + already_send_length; recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length; #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) rt_uint32_t* dma_buf = RT_NULL; if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)) { dma_buf = (rt_uint32_t *)rt_malloc_align(send_length,32); if(send_buf) { rt_memcpy(dma_buf, send_buf, send_length); } else { rt_memset(dma_buf, 0xFF, send_length); } rt_hw_cpu_dcache_ops(RT_HW_CACHE_FLUSH, dma_buf, send_length); state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)dma_buf, (uint8_t *)dma_buf, send_length); } else #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */ /* start once data exchange in DMA mode */ if (message->send_buf && message->recv_buf) { if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)) { state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length); } else { state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000); } } else if (message->send_buf) { if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) { state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length); } else { state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000); } if (message->cs_release && (device->config.mode & RT_SPI_3WIRE)) { /* release the CS by disable SPI when using 3 wires SPI */ __HAL_SPI_DISABLE(spi_handle); } } else { memset((uint8_t *)recv_buf, 0xff, send_length); if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG) { state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length); } else { /* clear the old error flag */ __HAL_SPI_CLEAR_OVRFLAG(spi_handle); state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000); } } if (state != HAL_OK) { LOG_I("spi transfer error : %d", state); message->length = 0; spi_handle->State = HAL_SPI_STATE_READY; } else { LOG_D("%s transfer done", spi_drv->config->bus_name); } /* For simplicity reasons, this example is just waiting till the end of the transfer, but application may perform other tasks while transfer operation is ongoing. */ if (spi_drv->spi_dma_flag & (SPI_USING_TX_DMA_FLAG | SPI_USING_RX_DMA_FLAG)) { /* blocking the thread,and the other tasks can run */ rt_completion_wait(&spi_drv->cpt, RT_WAITING_FOREVER); } else { while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY); } #if defined(SOC_SERIES_STM32H7) || defined(SOC_SERIES_STM32F7) if(dma_buf) { if(recv_buf) { rt_hw_cpu_dcache_ops(RT_HW_CACHE_INVALIDATE, dma_buf, send_length); rt_memcpy(recv_buf, dma_buf,send_length); } rt_free_align(dma_buf); } #endif /* SOC_SERIES_STM32H7 || SOC_SERIES_STM32F7 */ } if (message->cs_release && !(device->config.mode & RT_SPI_NO_CS)) { if (device->config.mode & RT_SPI_CS_HIGH) HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET); else HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET); } return message->length; } static rt_err_t spi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration) { RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus); spi_drv->cfg = configuration; return stm32_spi_init(spi_drv, configuration); } static const struct rt_spi_ops stm_spi_ops = { .configure = spi_configure, .xfer = spixfer, }; static int rt_hw_spi_bus_init(void) { rt_err_t result; for (rt_size_t i = 0; i < sizeof(spi_config) / sizeof(spi_config[0]); i++) { spi_bus_obj[i].config = &spi_config[i]; spi_bus_obj[i].spi_bus.parent.user_data = &spi_config[i]; spi_bus_obj[i].handle.Instance = spi_config[i].Instance; if (spi_bus_obj[i].spi_dma_flag & SPI_USING_RX_DMA_FLAG) { /* Configure the DMA handler for Transmission process */ spi_bus_obj[i].dma.handle_rx.Instance = spi_config[i].dma_rx->Instance; #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) spi_bus_obj[i].dma.handle_rx.Init.Channel = spi_config[i].dma_rx->channel; #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7) spi_bus_obj[i].dma.handle_rx.Init.Request = spi_config[i].dma_rx->request; #endif spi_bus_obj[i].dma.handle_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; spi_bus_obj[i].dma.handle_rx.Init.PeriphInc = DMA_PINC_DISABLE; spi_bus_obj[i].dma.handle_rx.Init.MemInc = DMA_MINC_ENABLE; spi_bus_obj[i].dma.handle_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; spi_bus_obj[i].dma.handle_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; spi_bus_obj[i].dma.handle_rx.Init.Mode = DMA_NORMAL; spi_bus_obj[i].dma.handle_rx.Init.Priority = DMA_PRIORITY_HIGH; #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7) spi_bus_obj[i].dma.handle_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; spi_bus_obj[i].dma.handle_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; spi_bus_obj[i].dma.handle_rx.Init.MemBurst = DMA_MBURST_INC4; spi_bus_obj[i].dma.handle_rx.Init.PeriphBurst = DMA_PBURST_INC4; #endif { rt_uint32_t tmpreg = 0x00U; #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) /* enable DMA clock && Delay after an RCC peripheral clock enabling*/ SET_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc); tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_rx->dma_rcc); #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7) SET_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc); /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_rx->dma_rcc); #elif defined(SOC_SERIES_STM32MP1) __HAL_RCC_DMAMUX_CLK_ENABLE(); SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc); tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_rx->dma_rcc); #endif UNUSED(tmpreg); /* To avoid compiler warnings */ } } if (spi_bus_obj[i].spi_dma_flag & SPI_USING_TX_DMA_FLAG) { /* Configure the DMA handler for Transmission process */ spi_bus_obj[i].dma.handle_tx.Instance = spi_config[i].dma_tx->Instance; #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) spi_bus_obj[i].dma.handle_tx.Init.Channel = spi_config[i].dma_tx->channel; #elif defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7) spi_bus_obj[i].dma.handle_tx.Init.Request = spi_config[i].dma_tx->request; #endif spi_bus_obj[i].dma.handle_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; spi_bus_obj[i].dma.handle_tx.Init.PeriphInc = DMA_PINC_DISABLE; spi_bus_obj[i].dma.handle_tx.Init.MemInc = DMA_MINC_ENABLE; spi_bus_obj[i].dma.handle_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE; spi_bus_obj[i].dma.handle_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE; spi_bus_obj[i].dma.handle_tx.Init.Mode = DMA_NORMAL; spi_bus_obj[i].dma.handle_tx.Init.Priority = DMA_PRIORITY_LOW; #if defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32MP1) || defined(SOC_SERIES_STM32H7) spi_bus_obj[i].dma.handle_tx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; spi_bus_obj[i].dma.handle_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; spi_bus_obj[i].dma.handle_tx.Init.MemBurst = DMA_MBURST_INC4; spi_bus_obj[i].dma.handle_tx.Init.PeriphBurst = DMA_PBURST_INC4; #endif { rt_uint32_t tmpreg = 0x00U; #if defined(SOC_SERIES_STM32F1) || defined(SOC_SERIES_STM32G0) || defined(SOC_SERIES_STM32F0) /* enable DMA clock && Delay after an RCC peripheral clock enabling*/ SET_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc); tmpreg = READ_BIT(RCC->AHBENR, spi_config[i].dma_tx->dma_rcc); #elif defined(SOC_SERIES_STM32F2) || defined(SOC_SERIES_STM32F4) || defined(SOC_SERIES_STM32F7) || defined(SOC_SERIES_STM32L4) || defined(SOC_SERIES_STM32WB) || defined(SOC_SERIES_STM32H7) SET_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc); /* Delay after an RCC peripheral clock enabling */ tmpreg = READ_BIT(RCC->AHB1ENR, spi_config[i].dma_tx->dma_rcc); #elif defined(SOC_SERIES_STM32MP1) __HAL_RCC_DMAMUX_CLK_ENABLE(); SET_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc); tmpreg = READ_BIT(RCC->MP_AHB2ENSETR, spi_config[i].dma_tx->dma_rcc); #endif UNUSED(tmpreg); /* To avoid compiler warnings */ } } /* initialize completion object */ rt_completion_init(&spi_bus_obj[i].cpt); result = rt_spi_bus_register(&spi_bus_obj[i].spi_bus, spi_config[i].bus_name, &stm_spi_ops); RT_ASSERT(result == RT_EOK); LOG_D("%s bus init done", spi_config[i].bus_name); } return result; } /** * Attach the spi device to SPI bus, this function must be used after initialization. */ rt_err_t rt_hw_spi_device_attach(const char *bus_name, const char *device_name, GPIO_TypeDef *cs_gpiox, uint16_t cs_gpio_pin) { RT_ASSERT(bus_name != RT_NULL); RT_ASSERT(device_name != RT_NULL); rt_err_t result; struct rt_spi_device *spi_device; struct stm32_hw_spi_cs *cs_pin; /* initialize the cs pin && select the slave*/ GPIO_InitTypeDef GPIO_Initure; GPIO_Initure.Pin = cs_gpio_pin; GPIO_Initure.Mode = GPIO_MODE_OUTPUT_PP; GPIO_Initure.Pull = GPIO_PULLUP; GPIO_Initure.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(cs_gpiox, &GPIO_Initure); HAL_GPIO_WritePin(cs_gpiox, cs_gpio_pin, GPIO_PIN_SET); /* attach the device to spi bus*/ spi_device = (struct rt_spi_device *)rt_malloc(sizeof(struct rt_spi_device)); RT_ASSERT(spi_device != RT_NULL); cs_pin = (struct stm32_hw_spi_cs *)rt_malloc(sizeof(struct stm32_hw_spi_cs)); RT_ASSERT(cs_pin != RT_NULL); cs_pin->GPIOx = cs_gpiox; cs_pin->GPIO_Pin = cs_gpio_pin; result = rt_spi_bus_attach_device(spi_device, device_name, bus_name, (void *)cs_pin); if (result != RT_EOK) { LOG_E("%s attach to %s faild, %d\n", device_name, bus_name, result); } RT_ASSERT(result == RT_EOK); LOG_D("%s attach to %s done", device_name, bus_name); return result; } #if defined(BSP_SPI1_TX_USING_DMA) || defined(BSP_SPI1_RX_USING_DMA) void SPI1_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_SPI_IRQHandler(&spi_bus_obj[SPI1_INDEX].handle); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA) /** * @brief This function handles DMA Rx interrupt request. * @param None * @retval None */ void SPI1_DMA_RX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_rx); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA) /** * @brief This function handles DMA Tx interrupt request. * @param None * @retval None */ void SPI1_DMA_TX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI1_INDEX].dma.handle_tx); /* leave interrupt */ rt_interrupt_leave(); } #endif /* defined(BSP_USING_SPI1) && defined(BSP_SPI_USING_DMA) */ #if defined(BSP_SPI2_TX_USING_DMA) || defined(BSP_SPI2_RX_USING_DMA) void SPI2_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_SPI_IRQHandler(&spi_bus_obj[SPI2_INDEX].handle); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA) /** * @brief This function handles DMA Rx interrupt request. * @param None * @retval None */ void SPI2_DMA_RX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_rx); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA) /** * @brief This function handles DMA Tx interrupt request. * @param None * @retval None */ void SPI2_DMA_TX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI2_INDEX].dma.handle_tx); /* leave interrupt */ rt_interrupt_leave(); } #endif /* defined(BSP_USING_SPI2) && defined(BSP_SPI_USING_DMA) */ #if defined(BSP_SPI3_TX_USING_DMA) || defined(BSP_SPI3_RX_USING_DMA) void SPI3_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_SPI_IRQHandler(&spi_bus_obj[SPI3_INDEX].handle); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_RX_USING_DMA) /** * @brief This function handles DMA Rx interrupt request. * @param None * @retval None */ void SPI3_DMA_RX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_rx); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI3) && defined(BSP_SPI3_TX_USING_DMA) /** * @brief This function handles DMA Tx interrupt request. * @param None * @retval None */ void SPI3_DMA_TX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI3_INDEX].dma.handle_tx); /* leave interrupt */ rt_interrupt_leave(); } #endif /* defined(BSP_USING_SPI3) && defined(BSP_SPI_USING_DMA) */ #if defined(BSP_SPI4_TX_USING_DMA) || defined(BSP_SPI4_RX_USING_DMA) void SPI4_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_SPI_IRQHandler(&spi_bus_obj[SPI4_INDEX].handle); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_RX_USING_DMA) /** * @brief This function handles DMA Rx interrupt request. * @param None * @retval None */ void SPI4_DMA_RX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_rx); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI4) && defined(BSP_SPI4_TX_USING_DMA) /** * @brief This function handles DMA Tx interrupt request. * @param None * @retval None */ void SPI4_DMA_TX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI4_INDEX].dma.handle_tx); /* leave interrupt */ rt_interrupt_leave(); } #endif /* defined(BSP_USING_SPI4) && defined(BSP_SPI_USING_DMA) */ #if defined(BSP_SPI5_TX_USING_DMA) || defined(BSP_SPI5_RX_USING_DMA) void SPI5_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_SPI_IRQHandler(&spi_bus_obj[SPI5_INDEX].handle); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_RX_USING_DMA) /** * @brief This function handles DMA Rx interrupt request. * @param None * @retval None */ void SPI5_DMA_RX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_rx); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI5) && defined(BSP_SPI5_TX_USING_DMA) /** * @brief This function handles DMA Tx interrupt request. * @param None * @retval None */ void SPI5_DMA_TX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI5_INDEX].dma.handle_tx); /* leave interrupt */ rt_interrupt_leave(); } #endif /* defined(BSP_USING_SPI5) && defined(BSP_SPI_USING_DMA) */ #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_RX_USING_DMA) /** * @brief This function handles DMA Rx interrupt request. * @param None * @retval None */ void SPI6_DMA_RX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_rx); /* leave interrupt */ rt_interrupt_leave(); } #endif #if defined(BSP_USING_SPI6) && defined(BSP_SPI6_TX_USING_DMA) /** * @brief This function handles DMA Tx interrupt request. * @param None * @retval None */ void SPI6_DMA_TX_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_DMA_IRQHandler(&spi_bus_obj[SPI6_INDEX].dma.handle_tx); /* leave interrupt */ rt_interrupt_leave(); } #endif /* defined(BSP_USING_SPI6) && defined(BSP_SPI_USING_DMA) */ static void stm32_get_dma_info(void) { #ifdef BSP_SPI1_RX_USING_DMA spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG; static struct dma_config spi1_dma_rx = SPI1_RX_DMA_CONFIG; spi_config[SPI1_INDEX].dma_rx = &spi1_dma_rx; #endif #ifdef BSP_SPI1_TX_USING_DMA spi_bus_obj[SPI1_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG; static struct dma_config spi1_dma_tx = SPI1_TX_DMA_CONFIG; spi_config[SPI1_INDEX].dma_tx = &spi1_dma_tx; #endif #ifdef BSP_SPI2_RX_USING_DMA spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG; static struct dma_config spi2_dma_rx = SPI2_RX_DMA_CONFIG; spi_config[SPI2_INDEX].dma_rx = &spi2_dma_rx; #endif #ifdef BSP_SPI2_TX_USING_DMA spi_bus_obj[SPI2_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG; static struct dma_config spi2_dma_tx = SPI2_TX_DMA_CONFIG; spi_config[SPI2_INDEX].dma_tx = &spi2_dma_tx; #endif #ifdef BSP_SPI3_RX_USING_DMA spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG; static struct dma_config spi3_dma_rx = SPI3_RX_DMA_CONFIG; spi_config[SPI3_INDEX].dma_rx = &spi3_dma_rx; #endif #ifdef BSP_SPI3_TX_USING_DMA spi_bus_obj[SPI3_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG; static struct dma_config spi3_dma_tx = SPI3_TX_DMA_CONFIG; spi_config[SPI3_INDEX].dma_tx = &spi3_dma_tx; #endif #ifdef BSP_SPI4_RX_USING_DMA spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG; static struct dma_config spi4_dma_rx = SPI4_RX_DMA_CONFIG; spi_config[SPI4_INDEX].dma_rx = &spi4_dma_rx; #endif #ifdef BSP_SPI4_TX_USING_DMA spi_bus_obj[SPI4_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG; static struct dma_config spi4_dma_tx = SPI4_TX_DMA_CONFIG; spi_config[SPI4_INDEX].dma_tx = &spi4_dma_tx; #endif #ifdef BSP_SPI5_RX_USING_DMA spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG; static struct dma_config spi5_dma_rx = SPI5_RX_DMA_CONFIG; spi_config[SPI5_INDEX].dma_rx = &spi5_dma_rx; #endif #ifdef BSP_SPI5_TX_USING_DMA spi_bus_obj[SPI5_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG; static struct dma_config spi5_dma_tx = SPI5_TX_DMA_CONFIG; spi_config[SPI5_INDEX].dma_tx = &spi5_dma_tx; #endif #ifdef BSP_SPI6_RX_USING_DMA spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_RX_DMA_FLAG; static struct dma_config spi6_dma_rx = SPI6_RX_DMA_CONFIG; spi_config[SPI6_INDEX].dma_rx = &spi6_dma_rx; #endif #ifdef BSP_SPI6_TX_USING_DMA spi_bus_obj[SPI6_INDEX].spi_dma_flag |= SPI_USING_TX_DMA_FLAG; static struct dma_config spi6_dma_tx = SPI6_TX_DMA_CONFIG; spi_config[SPI6_INDEX].dma_tx = &spi6_dma_tx; #endif } void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi) { struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle); rt_completion_done(&spi_drv->cpt); } void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi) { struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle); rt_completion_done(&spi_drv->cpt); } void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi) { struct stm32_spi *spi_drv = rt_container_of(hspi, struct stm32_spi, handle); rt_completion_done(&spi_drv->cpt); } #if defined(SOC_SERIES_STM32F0) void SPI1_DMA_RX_TX_IRQHandler(void) { #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_TX_USING_DMA) SPI1_DMA_TX_IRQHandler(); #endif #if defined(BSP_USING_SPI1) && defined(BSP_SPI1_RX_USING_DMA) SPI1_DMA_RX_IRQHandler(); #endif } void SPI2_DMA_RX_TX_IRQHandler(void) { #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_TX_USING_DMA) SPI2_DMA_TX_IRQHandler(); #endif #if defined(BSP_USING_SPI2) && defined(BSP_SPI2_RX_USING_DMA) SPI2_DMA_RX_IRQHandler(); #endif } #endif /* SOC_SERIES_STM32F0 */ int rt_hw_spi_init(void) { stm32_get_dma_info(); return rt_hw_spi_bus_init(); } INIT_BOARD_EXPORT(rt_hw_spi_init); #endif /* BSP_USING_SPI1 || BSP_USING_SPI2 || BSP_USING_SPI3 || BSP_USING_SPI4 || BSP_USING_SPI5 */ #endif /* BSP_USING_SPI */