/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-08-21 zhangjun copy from minilibc * 2020-09-07 Meco Man combine gcc armcc iccarm * 2021-02-05 Meco Man add timegm() * 2021-02-07 Meco Man fixed gettimeofday() * 2021-02-08 Meco Man add settimeofday() stime() * 2021-02-10 Meco Man add ctime_r() and re-implement ctime() * 2021-02-11 Meco Man fix bug #3183 - align days[] and months[] to 4 bytes * 2021-02-12 Meco Man add errno * 2012-12-08 Bernard fix the issue of _timevalue.tv_usec initialization, * which found by Rob * 2021-02-12 Meco Man move all of the functions located in to this file * 2021-03-15 Meco Man fixed bug: https://club.rt-thread.org/ask/question/423650.html */ #include #include #ifdef RT_USING_DEVICE #include #endif #define DBG_TAG "TIME" #define DBG_LVL DBG_INFO #include /* seconds per day */ #define SPD 24*60*60 /* days per month -- nonleap! */ static const short __spm[13] = { 0, (31), (31 + 28), (31 + 28 + 31), (31 + 28 + 31 + 30), (31 + 28 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31), }; ALIGN(4) static const char days[] = "Sun Mon Tue Wed Thu Fri Sat "; ALIGN(4) static const char months[] = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec "; static int __isleap(int year) { /* every fourth year is a leap year except for century years that are * not divisible by 400. */ /* return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); */ return (!(year % 4) && ((year % 100) || !(year % 400))); } static void num2str(char *c, int i) { c[0] = i / 10 + '0'; c[1] = i % 10 + '0'; } /** * Get time from RTC device (without timezone) * @param tv: struct timeval * @return -1 failure; 1 success */ static int get_timeval(struct timeval *tv) { #ifdef RT_USING_RTC static rt_device_t device = RT_NULL; rt_err_t rst = -RT_ERROR; if (tv == RT_NULL) return -1; /* default is 0 */ tv->tv_sec = 0; tv->tv_usec = 0; /* optimization: find rtc device only first */ if (device == RT_NULL) { device = rt_device_find("rtc"); } /* read timestamp from RTC device */ if (device != RT_NULL) { if (rt_device_open(device, 0) == RT_EOK) { rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &tv->tv_sec); rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME_US, &tv->tv_usec); rt_device_close(device); } } else { /* LOG_W will cause a recursive printing if ulog timestamp function is turned on */ rt_kprintf("Cannot find a RTC device to provide time!\r\n"); return -1; } return (rst < 0) ? -1 : 1; #else /* LOG_W will cause a recursive printing if ulog timestamp function is turned on */ rt_kprintf("Cannot find a RTC device to provide time!\r\n"); return -1; #endif /* RT_USING_RTC */ } /** * Set time to RTC device (without timezone) * @param tv: struct timeval * @return -1 failure; 1 success */ static int set_timeval(struct timeval *tv) { #ifdef RT_USING_RTC static rt_device_t device = RT_NULL; rt_err_t rst = -RT_ERROR; if (tv == RT_NULL) return -1; /* optimization: find rtc device only first */ if (device == RT_NULL) { device = rt_device_find("rtc"); } /* read timestamp from RTC device */ if (device != RT_NULL) { if (rt_device_open(device, 0) == RT_EOK) { rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &tv->tv_sec); rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME_US, &tv->tv_usec); rt_device_close(device); } } else { LOG_W("Cannot find a RTC device to provide time!"); return -1; } return (rst < 0) ? -1 : 1; #else LOG_W("Cannot find a RTC device to provide time!"); return -1; #endif /* RT_USING_RTC */ } struct tm *gmtime_r(const time_t *timep, struct tm *r) { time_t i; register time_t work = *timep % (SPD); r->tm_sec = work % 60; work /= 60; r->tm_min = work % 60; r->tm_hour = work / 60; work = *timep / (SPD); r->tm_wday = (4 + work) % 7; for (i = 1970;; ++i) { register time_t k = __isleap(i) ? 366 : 365; if (work >= k) work -= k; else break; } r->tm_year = i - 1900; r->tm_yday = work; r->tm_mday = 1; if (__isleap(i) && (work > 58)) { if (work == 59) r->tm_mday = 2; /* 29.2. */ work -= 1; } for (i = 11; i && (__spm[i] > work); --i) ; r->tm_mon = i; r->tm_mday += work - __spm[i]; r->tm_isdst = 0; return r; } RTM_EXPORT(gmtime_r); struct tm* gmtime(const time_t* t) { static struct tm tmp; return gmtime_r(t, &tmp); } RTM_EXPORT(gmtime); /*TODO: timezone */ struct tm* localtime_r(const time_t* t, struct tm* r) { time_t local_tz; int utc_plus; utc_plus = 8; /* GMT: UTC+8 */ local_tz = *t + utc_plus * 3600; return gmtime_r(&local_tz, r); } RTM_EXPORT(localtime_r); struct tm* localtime(const time_t* t) { static struct tm tmp; return localtime_r(t, &tmp); } RTM_EXPORT(localtime); /* TODO: timezone */ time_t mktime(struct tm * const t) { time_t timestamp; int utc_plus; utc_plus = 8; /* GMT: UTC+8 */ timestamp = timegm(t); timestamp = timestamp - 3600 * utc_plus; return timestamp; } RTM_EXPORT(mktime); char* asctime_r(const struct tm *t, char *buf) { /* "Wed Jun 30 21:49:08 1993\n" */ *(int*) buf = *(int*) (days + (t->tm_wday << 2)); *(int*) (buf + 4) = *(int*) (months + (t->tm_mon << 2)); num2str(buf + 8, t->tm_mday); if (buf[8] == '0') buf[8] = ' '; buf[10] = ' '; num2str(buf + 11, t->tm_hour); buf[13] = ':'; num2str(buf + 14, t->tm_min); buf[16] = ':'; num2str(buf + 17, t->tm_sec); buf[19] = ' '; num2str(buf + 20, (t->tm_year + 1900) / 100); num2str(buf + 22, (t->tm_year + 1900) % 100); buf[24] = '\n'; buf[25] = '\0'; return buf; } RTM_EXPORT(asctime_r); char* asctime(const struct tm *timeptr) { static char buf[26]; return asctime_r(timeptr, buf); } RTM_EXPORT(asctime); char *ctime_r (const time_t * tim_p, char * result) { struct tm tm; return asctime_r (localtime_r (tim_p, &tm), result); } RTM_EXPORT(ctime_r); char* ctime(const time_t *tim_p) { return asctime (localtime (tim_p)); } RTM_EXPORT(ctime); /** * Returns the current time. * * @param time_t * t the timestamp pointer, if not used, keep NULL. * * @return The value ((time_t)-1) is returned if the calendar time is not available. * If timer is not a NULL pointer, the return value is also stored in timer. * */ RT_WEAK time_t time(time_t *t) { struct timeval now; if(get_timeval(&now) > 0) { if (t) { *t = now.tv_sec; } return now.tv_sec; } else { errno = EFAULT; return ((time_t)-1); } } RTM_EXPORT(time); RT_WEAK clock_t clock(void) { return rt_tick_get(); } RTM_EXPORT(clock); int stime(const time_t *t) { struct timeval tv; if (!t) { errno = EFAULT; return -1; } tv.tv_sec = *t; if (set_timeval(&tv) > 0) { return 0; } else { errno = EFAULT; return -1; } } RTM_EXPORT(stime); time_t timegm(struct tm * const t) { register time_t day; register time_t i; register time_t years = t->tm_year - 70; if (t->tm_sec > 60) { t->tm_min += t->tm_sec / 60; t->tm_sec %= 60; } if (t->tm_min > 60) { t->tm_hour += t->tm_min / 60; t->tm_min %= 60; } if (t->tm_hour > 24) { t->tm_mday += t->tm_hour / 24; t->tm_hour %= 24; } if (t->tm_mon > 12) { t->tm_year += t->tm_mon / 12; t->tm_mon %= 12; } while (t->tm_mday > __spm[1 + t->tm_mon]) { if (t->tm_mon == 1 && __isleap(t->tm_year + 1900)) { --t->tm_mday; } t->tm_mday -= __spm[t->tm_mon]; ++t->tm_mon; if (t->tm_mon > 11) { t->tm_mon = 0; ++t->tm_year; } } if (t->tm_year < 70) return (time_t) - 1; /* Days since 1970 is 365 * number of years + number of leap years since 1970 */ day = years * 365 + (years + 1) / 4; /* After 2100 we have to substract 3 leap years for every 400 years This is not intuitive. Most mktime implementations do not support dates after 2059, anyway, so we might leave this out for it's bloat. */ if (years >= 131) { years -= 131; years /= 100; day -= (years >> 2) * 3 + 1; if ((years &= 3) == 3) years--; day -= years; } day += t->tm_yday = __spm[t->tm_mon] + t->tm_mday - 1 + (__isleap(t->tm_year + 1900) & (t->tm_mon > 1)); /* day is now the number of days since 'Jan 1 1970' */ i = 7; t->tm_wday = (day + 4) % i; /* Sunday=0, Monday=1, ..., Saturday=6 */ i = 24; day *= i; i = 60; return ((day + t->tm_hour) * i + t->tm_min) * i + t->tm_sec; } RTM_EXPORT(timegm); /* TODO: timezone */ int gettimeofday(struct timeval *tv, struct timezone *tz) { if (tv != RT_NULL && get_timeval(tv) > 0) { return 0; } else { errno = EFAULT; return -1; } } RTM_EXPORT(gettimeofday); /* TODO: timezone */ int settimeofday(const struct timeval *tv, const struct timezone *tz) { if (tv != RT_NULL) { if(tv->tv_sec >= 0 && tv->tv_usec >= 0) { if(set_timeval((struct timeval *)tv) > 0) { return 0; } else { errno = EFAULT; return -1; } } else { errno = EINVAL; return -1; } } else { errno = EFAULT; return -1; } } RTM_EXPORT(settimeofday); /* inherent in the toolchain */ RTM_EXPORT(difftime); RTM_EXPORT(strftime); #ifdef RT_USING_POSIX static struct timeval _timevalue; static int clock_time_system_init() { time_t time; rt_tick_t tick; rt_device_t device; time = 0; device = rt_device_find("rtc"); if (device != RT_NULL) { /* get realtime seconds */ rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time); } /* get tick */ tick = rt_tick_get(); _timevalue.tv_usec = (tick%RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK; _timevalue.tv_sec = time - tick/RT_TICK_PER_SECOND - 1; return 0; } INIT_COMPONENT_EXPORT(clock_time_system_init); int clock_getres(clockid_t clockid, struct timespec *res) { int ret = 0; if (res == RT_NULL) { rt_set_errno(EINVAL); return -1; } switch (clockid) { case CLOCK_REALTIME: res->tv_sec = 0; res->tv_nsec = NANOSECOND_PER_SECOND/RT_TICK_PER_SECOND; break; #ifdef RT_USING_CPUTIME case CLOCK_CPUTIME_ID: res->tv_sec = 0; res->tv_nsec = clock_cpu_getres(); break; #endif default: ret = -1; rt_set_errno(EINVAL); break; } return ret; } RTM_EXPORT(clock_getres); int clock_gettime(clockid_t clockid, struct timespec *tp) { int ret = 0; if (tp == RT_NULL) { rt_set_errno(EINVAL); return -1; } switch (clockid) { case CLOCK_REALTIME: { /* get tick */ int tick = rt_tick_get(); tp->tv_sec = _timevalue.tv_sec + tick / RT_TICK_PER_SECOND; tp->tv_nsec = (_timevalue.tv_usec + (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK) * 1000; } break; #ifdef RT_USING_CPUTIME case CLOCK_CPUTIME_ID: { float unit = 0; long long cpu_tick; unit = clock_cpu_getres(); cpu_tick = clock_cpu_gettime(); tp->tv_sec = ((int)(cpu_tick * unit)) / NANOSECOND_PER_SECOND; tp->tv_nsec = ((int)(cpu_tick * unit)) % NANOSECOND_PER_SECOND; } break; #endif default: rt_set_errno(EINVAL); ret = -1; } return ret; } RTM_EXPORT(clock_gettime); int clock_settime(clockid_t clockid, const struct timespec *tp) { int second; rt_tick_t tick; rt_device_t device; if ((clockid != CLOCK_REALTIME) || (tp == RT_NULL)) { rt_set_errno(EINVAL); return -1; } /* get second */ second = tp->tv_sec; /* get tick */ tick = rt_tick_get(); /* update timevalue */ _timevalue.tv_usec = MICROSECOND_PER_SECOND - (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK; _timevalue.tv_sec = second - tick/RT_TICK_PER_SECOND - 1; /* update for RTC device */ device = rt_device_find("rtc"); if (device != RT_NULL) { /* set realtime seconds */ rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &second); } else return -1; return 0; } RTM_EXPORT(clock_settime); int clock_time_to_tick(const struct timespec *time) { int tick; int nsecond, second; struct timespec tp; RT_ASSERT(time != RT_NULL); tick = RT_WAITING_FOREVER; if (time != NULL) { /* get current tp */ clock_gettime(CLOCK_REALTIME, &tp); if ((time->tv_nsec - tp.tv_nsec) < 0) { nsecond = NANOSECOND_PER_SECOND - (tp.tv_nsec - time->tv_nsec); second = time->tv_sec - tp.tv_sec - 1; } else { nsecond = time->tv_nsec - tp.tv_nsec; second = time->tv_sec - tp.tv_sec; } tick = second * RT_TICK_PER_SECOND + nsecond * RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND; if (tick < 0) tick = 0; } return tick; } RTM_EXPORT(clock_time_to_tick); #endif /* RT_USING_POSIX */