/**************************************************************************//**
*
* @copyright (C) 2020 Nuvoton Technology Corp. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date            Author         Notes
* 2020-3-3        CHChen         First version
* 2020-5-3        YCHuang12      Add TDES and SHA
* 2022-4-17       Wayne          Fix TRNG and PRNG selection
*
******************************************************************************/

#include <rtconfig.h>

#if ((defined(BSP_USING_CRYPTO) || defined(BSP_USING_TRNG) || defined(BSP_USING_CRC)) && defined(RT_USING_HWCRYPTO))

#include <rtdevice.h>
#include <board.h>
#include "NuMicro.h"
#include <nu_bitutil.h>

#if defined(BSP_USING_TRNG)
    #include "drv_trng.h"
#endif

#if defined(BSP_USING_CRC)
    #include "drv_crc.h"
#endif

/* Private typedef --------------------------------------------------------------*/
#define LOG_TAG         "CRYPTO"
#define DBG_ENABLE
#define DBG_SECTION_NAME "CRYPTO"
#define DBG_LEVEL DBG_INFO
#define DBG_COLOR
#include <rtdbg.h>

typedef struct
{
    uint8_t *pu8SHATempBuf;
    uint32_t u32SHATempBufLen;
    uint32_t u32DMAMode;
    uint32_t u32BlockSize;
} S_SHA_CONTEXT;

/* Private functions ------------------------------------------------------------*/
static rt_err_t nu_hwcrypto_create(struct rt_hwcrypto_ctx *ctx);
static void nu_hwcrypto_destroy(struct rt_hwcrypto_ctx *ctx);
static rt_err_t nu_hwcrypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src);
static void nu_hwcrypto_reset(struct rt_hwcrypto_ctx *ctx);

/* Private variables ------------------------------------------------------------*/
static const struct rt_hwcrypto_ops nu_hwcrypto_ops =
{
    .create = nu_hwcrypto_create,
    .destroy = nu_hwcrypto_destroy,
    .copy = nu_hwcrypto_clone,
    .reset = nu_hwcrypto_reset,
};

/* Crypto engine operation ------------------------------------------------------------*/
#if defined(BSP_USING_CRYPTO)

#define NU_HWCRYPTO_DES_3KEYS    1
#define NU_HWCRYPTO_DES_NO3KEYS  0
#define NU_HWCRYPTO_AES_NAME    "nu_AES"
#define NU_HWCRYPTO_TDES_NAME   "nu_TDES"
#define NU_HWCRYPTO_SHA_NAME    "nu_SHA"
#define NU_HWCRYPTO_PRNG_NAME   "nu_PRNG"

static struct rt_mutex s_AES_mutex;
static struct rt_mutex s_TDES_mutex;
static struct rt_mutex s_SHA_mutex;

static rt_err_t nu_crypto_init(void)
{
    rt_err_t result = RT_EOK;

    /* init cipher mutex */
#if defined(RT_HWCRYPTO_USING_AES)
    result = rt_mutex_init(&s_AES_mutex, NU_HWCRYPTO_AES_NAME, RT_IPC_FLAG_PRIO);
    RT_ASSERT(result == RT_EOK);
    AES_ENABLE_INT(CRPT);
#endif

#if defined(RT_HWCRYPTO_USING_3DES)
    result = rt_mutex_init(&s_TDES_mutex, NU_HWCRYPTO_TDES_NAME, RT_IPC_FLAG_PRIO);
    RT_ASSERT(result == RT_EOK);
    TDES_ENABLE_INT(CRPT);
#endif

#if defined(RT_HWCRYPTO_USING_SHA1) || defined(RT_HWCRYPTO_USING_SHA2)
    result = rt_mutex_init(&s_SHA_mutex, NU_HWCRYPTO_SHA_NAME, RT_IPC_FLAG_PRIO);
    RT_ASSERT(result == RT_EOK);
    SHA_ENABLE_INT(CRPT);
#endif

    return result;
}

static rt_err_t nu_aes_crypt_run(
    rt_bool_t bEncrypt,
    uint32_t u32OpMode,
    uint8_t *pu8Key,
    uint32_t u32KeySize,
    uint8_t *pu8IV,
    uint8_t *pu8InData,
    uint8_t *pu8OutData,
    uint32_t u32DataLen
)
{
    uint32_t au32SwapKey[8];
    uint32_t au32SwapIV[4];
    rt_err_t result;

    au32SwapKey[0] = nu_get32_be(&pu8Key[0]);
    au32SwapKey[1] = nu_get32_be(&pu8Key[4]);
    au32SwapKey[2] = nu_get32_be(&pu8Key[8]);
    au32SwapKey[3] = nu_get32_be(&pu8Key[12]);

    if ((u32KeySize == AES_KEY_SIZE_192) || (u32KeySize == AES_KEY_SIZE_256))
    {
        au32SwapKey[4] = nu_get32_be(&pu8Key[16]);
        au32SwapKey[5] = nu_get32_be(&pu8Key[20]);
    }

    if (u32KeySize == AES_KEY_SIZE_256)
    {
        au32SwapKey[6] = nu_get32_be(&pu8Key[24]);
        au32SwapKey[7] = nu_get32_be(&pu8Key[28]);
    }

    au32SwapIV[0] = nu_get32_be(&pu8IV[0]);
    au32SwapIV[1] = nu_get32_be(&pu8IV[4]);
    au32SwapIV[2] = nu_get32_be(&pu8IV[8]);
    au32SwapIV[3] = nu_get32_be(&pu8IV[12]);

    result = rt_mutex_take(&s_AES_mutex, RT_WAITING_FOREVER);
    RT_ASSERT(result == RT_EOK);

    //Using Channel 0
    AES_Open(CRPT, 0, bEncrypt, u32OpMode, u32KeySize, AES_IN_OUT_SWAP);
    AES_SetKey(CRPT, 0, (uint32_t *)&au32SwapKey[0], u32KeySize);
    AES_SetInitVect(CRPT, 0, (uint32_t *)au32SwapIV);

    //Setup AES DMA
    AES_SetDMATransfer(CRPT, 0, (uint32_t)pu8InData, (uint32_t)pu8OutData, u32DataLen);
    AES_CLR_INT_FLAG(CRPT);

    /* Start AES encryption/decryption */
    AES_Start(CRPT, 0, CRYPTO_DMA_ONE_SHOT);

    /* Wait done */
    while (!(CRPT->INTSTS & CRPT_INTEN_AESIEN_Msk)) {};

    if ((u32DataLen % 16) && (CRPT->AES_STS & (CRPT_AES_STS_OUTBUFEMPTY_Msk | CRPT_AES_STS_INBUFEMPTY_Msk)))
        rt_kprintf("AES WARNING - AES Data length(%d) is not enough. -> %d \n", u32DataLen, RT_ALIGN(u32DataLen, 16));
    else if (CRPT->INTSTS & (CRPT_INTSTS_AESEIF_Msk) || (CRPT->AES_STS & (CRPT_AES_STS_BUSERR_Msk | CRPT_AES_STS_CNTERR_Msk)))
        rt_kprintf("AES ERROR - CRPT->INTSTS-%08x, CRPT->AES_STS-%08x\n", CRPT->INTSTS, CRPT->AES_STS);

    /* Clear AES interrupt status */
    AES_CLR_INT_FLAG(CRPT);

    result = rt_mutex_release(&s_AES_mutex);
    RT_ASSERT(result == RT_EOK);

    return RT_EOK;
}

static rt_err_t nu_prng_init(void)
{
    uint32_t u32Seed;

#if defined(NU_PRNG_USE_SEED)
    u32Seed = NU_PRNG_SEED_VALUE;
#else
    u32Seed = (uint32_t)rt_tick_get();
#endif

    //Open PRNG 128 bits.
    PRNG_Open(CRPT, PRNG_KEY_SIZE_128, PRNG_SEED_RELOAD, u32Seed);

    return RT_EOK;
}

static rt_uint32_t nu_prng_rand(struct hwcrypto_rng *ctx)
{
    uint32_t au32RNGValue[4];

    PRNG_Start(CRPT);

    PRNG_Read(CRPT, &au32RNGValue[0]);

    return au32RNGValue[0] ^ au32RNGValue[1] ^ au32RNGValue[2] ^ au32RNGValue[3];
}

static rt_err_t nu_aes_crypt(struct hwcrypto_symmetric *symmetric_ctx, struct hwcrypto_symmetric_info *symmetric_info)
{
    uint32_t u32AESOpMode;
    uint32_t u32AESKeySize;
    unsigned char *in, *out;
    unsigned char in_align_flag = 0;
    unsigned char out_align_flag = 0;
    unsigned char iv_temp[16];
    RT_ASSERT(symmetric_ctx != RT_NULL);
    RT_ASSERT(symmetric_info != RT_NULL);

    if ((symmetric_info->length % 4) != 0)
    {
        return -RT_EINVAL;
    }

    //Checking key length
    if (symmetric_ctx->key_bitlen == 128)
    {
        u32AESKeySize = AES_KEY_SIZE_128;
    }
    else if (symmetric_ctx->key_bitlen == 192)
    {
        u32AESKeySize = AES_KEY_SIZE_192;
    }
    else if (symmetric_ctx->key_bitlen == 256)
    {
        u32AESKeySize = AES_KEY_SIZE_256;
    }
    else
    {
        return -RT_EINVAL;
    }

    //Select AES operation mode
    switch (symmetric_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
    {
    case HWCRYPTO_TYPE_AES_ECB:
        u32AESOpMode = AES_MODE_ECB;
        break;
    case HWCRYPTO_TYPE_AES_CBC:
        u32AESOpMode = AES_MODE_CBC;
        break;
    case HWCRYPTO_TYPE_AES_CFB:
        u32AESOpMode = AES_MODE_CFB;
        break;
    case HWCRYPTO_TYPE_AES_OFB:
        u32AESOpMode = AES_MODE_OFB;
        break;
    case HWCRYPTO_TYPE_AES_CTR:
        u32AESOpMode = AES_MODE_CTR;
        break;
    default :
        return -RT_ERROR;
    }

    in = (unsigned char *)symmetric_info->in;
    out = (unsigned char *)symmetric_info->out;

    //Checking in/out data buffer address not alignment or out of SRAM
    if (((rt_uint32_t)in % 4) != 0 || ((rt_uint32_t)in < SRAM_BASE) || ((rt_uint32_t)in > SRAM_END))
    {
        in = rt_malloc(symmetric_info->length);
        if (in == RT_NULL)
        {
            LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
            return -RT_ENOMEM;
        }

        rt_memcpy(in, symmetric_info->in, symmetric_info->length);
        in_align_flag = 1;
    }

    if (((rt_uint32_t)out % 4) != 0 || ((rt_uint32_t)out < SRAM_BASE) || ((rt_uint32_t)out > SRAM_END))
    {
        out = rt_malloc(symmetric_info->length);
        if (out == RT_NULL)
        {
            if (in_align_flag)
                rt_free(in);
            LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
            return -RT_ENOMEM;
        }

        out_align_flag = 1;
    }

    if ((u32AESOpMode == AES_MODE_CBC) && (symmetric_info->mode == HWCRYPTO_MODE_DECRYPT))
    {
        uint32_t loop;

        loop = (symmetric_info->length - 1) / 16;
        rt_memcpy(iv_temp, in + (loop * 16), 16);
    }

    nu_aes_crypt_run(symmetric_info->mode == HWCRYPTO_MODE_ENCRYPT ? TRUE : FALSE, u32AESOpMode, symmetric_ctx->key, u32AESKeySize, symmetric_ctx->iv, in, out, symmetric_info->length);

    if (u32AESOpMode == AES_MODE_CBC)
    {
        if (symmetric_info->mode == HWCRYPTO_MODE_DECRYPT)
        {
            rt_memcpy(symmetric_ctx->iv, iv_temp, 16);
        }
        else
        {
            uint32_t loop;

            loop = (symmetric_info->length - 1) / 16;
            rt_memcpy(symmetric_ctx->iv, out + (loop * 16), 16);
        }
    }

    if (out_align_flag)
    {
        rt_memcpy(symmetric_info->out, out, symmetric_info->length);
        rt_free(out);
    }

    if (in_align_flag)
    {
        rt_free(in);
    }

    return RT_EOK;
}

static rt_err_t nu_des_crypt_run(
    rt_bool_t bEncrypt,
    uint32_t u32OpMode,
    uint8_t *pu8Key,
    uint32_t u32KeySize,
    uint8_t *pu8IV,
    uint8_t *pu8InData,
    uint8_t *pu8OutData,
    uint32_t u32DataLen
)
{
    rt_err_t result;

    uint32_t au32SwapKey[3][2];
    uint32_t au32SwapIV[2];

    au32SwapKey[0][0] = nu_get32_be(&pu8Key[0]);
    au32SwapKey[0][1] = nu_get32_be(&pu8Key[4]);
    au32SwapKey[1][0] = nu_get32_be(&pu8Key[8]);
    au32SwapKey[1][1] = nu_get32_be(&pu8Key[12]);

    if (u32KeySize == NU_HWCRYPTO_DES_3KEYS)
    {
        au32SwapKey[2][0] = nu_get32_be(&pu8Key[16]);
        au32SwapKey[2][1] = nu_get32_be(&pu8Key[20]);
    }

    au32SwapIV[0] = nu_get32_be(&pu8IV[0]);
    au32SwapIV[1] = nu_get32_be(&pu8IV[4]);

    result = rt_mutex_take(&s_TDES_mutex, RT_WAITING_FOREVER);
    RT_ASSERT(result == RT_EOK);

    //Using Channel 0
    TDES_Open(CRPT, 0, bEncrypt, (u32OpMode & CRPT_TDES_CTL_TMODE_Msk), u32KeySize, u32OpMode, TDES_IN_OUT_WHL_SWAP);
    TDES_SetKey(CRPT, 0, au32SwapKey);
    TDES_SetInitVect(CRPT, 0, au32SwapIV[0], au32SwapIV[1]);

    //Setup TDES DMA
    TDES_SetDMATransfer(CRPT, 0, (uint32_t)pu8InData, (uint32_t)pu8OutData, u32DataLen);
    TDES_CLR_INT_FLAG(CRPT);

    //Start TDES encryption/decryption
    TDES_Start(CRPT, 0, CRYPTO_DMA_ONE_SHOT);
    /* Wait done */
    while (!(CRPT->INTSTS & CRPT_INTEN_TDESIEN_Msk)) {};

    result = rt_mutex_release(&s_TDES_mutex);
    RT_ASSERT(result == RT_EOK);

    return RT_EOK;
}

static rt_err_t nu_des_crypt(struct hwcrypto_symmetric *symmetric_ctx, struct hwcrypto_symmetric_info *symmetric_info)
{
    uint32_t u32DESOpMode;
    uint32_t u32DESKeySize;
    unsigned char *in, *out;
    unsigned char in_align_flag = 0;
    unsigned char out_align_flag = 0;

    if ((symmetric_info->length % 8) != 0)
    {
        return -RT_EINVAL;
    }

    //Checking key length
    if (symmetric_ctx->key_bitlen == 128 || symmetric_ctx->key_bitlen == 64)
    {
        u32DESKeySize = NU_HWCRYPTO_DES_NO3KEYS;
    }
    else if (symmetric_ctx->key_bitlen == 192)
    {
        u32DESKeySize = NU_HWCRYPTO_DES_3KEYS;
    }
    else
    {
        return -RT_EINVAL;
    }

    //Select DES operation mode
    switch (symmetric_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
    {
    case HWCRYPTO_TYPE_DES_ECB:
        u32DESOpMode = DES_MODE_ECB;
        break;
    case HWCRYPTO_TYPE_DES_CBC:
        u32DESOpMode = DES_MODE_CBC;
        break;
    case HWCRYPTO_TYPE_3DES_ECB:
        u32DESOpMode = TDES_MODE_ECB;
        break;
    case HWCRYPTO_TYPE_3DES_CBC:
        u32DESOpMode = TDES_MODE_CBC;
        break;
    default :
        return -RT_ERROR;
    }

    in = (unsigned char *)symmetric_info->in;
    out = (unsigned char *)symmetric_info->out;

    //Checking in/out data buffer address not alignment or out of SRAM
    if (((rt_uint32_t)in % 4) != 0 || ((rt_uint32_t)in < SRAM_BASE) || ((rt_uint32_t)in > SRAM_END))
    {
        in = rt_malloc(symmetric_info->length);
        if (in == RT_NULL)
        {
            LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
            return -RT_ENOMEM;
        }

        rt_memcpy(in, symmetric_info->in, symmetric_info->length);
        in_align_flag = 1;
    }

    if (((rt_uint32_t)out % 4) != 0 || ((rt_uint32_t)out < SRAM_BASE) || ((rt_uint32_t)out > SRAM_END))
    {
        out = rt_malloc(symmetric_info->length);
        if (out == RT_NULL)
        {
            if (in_align_flag)
                rt_free(in);
            LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, symmetric_info->length);
            return -RT_ENOMEM;
        }

        out_align_flag = 1;
    }

    nu_des_crypt_run(symmetric_info->mode == HWCRYPTO_MODE_ENCRYPT ? TRUE : FALSE, u32DESOpMode, symmetric_ctx->key, u32DESKeySize, symmetric_ctx->iv, in, out, symmetric_info->length);

    if (out_align_flag)
    {
        rt_memcpy(symmetric_info->out, out, symmetric_info->length);
        rt_free(out);
    }

    if (in_align_flag)
    {
        rt_free(in);
    }

    return RT_EOK;
}

#define CRPT_HMAC_CTL_DMAFIRST_Pos     (4)                                               /*!< CRPT_T::HMAC_CTL: DMAFIRST Position  */
#define CRPT_HMAC_CTL_DMAFIRST_Msk     (0x1ul << CRPT_HMAC_CTL_DMAFIRST_Pos)           /*!< CRPT_T::HMAC_CTL: DMAFIRST Mask      */

static void SHABlockUpdate(uint32_t u32OpMode, uint32_t u32SrcAddr, uint32_t u32Len, uint32_t u32Mode)
{
    SHA_Open(CRPT, u32OpMode, SHA_IN_OUT_SWAP, 0);

    //Setup SHA DMA
    SHA_SetDMATransfer(CRPT, u32SrcAddr, u32Len);

    if (u32Mode == CRYPTO_DMA_FIRST)
    {
        if ((SYS->CSERVER & SYS_CSERVER_VERSION_Msk) == 0x0)
        {
            //M480MD version
            u32Mode = CRYPTO_DMA_CONTINUE;
        }
        else
        {
            //M480LD version
            CRPT->HMAC_CTL |= CRPT_HMAC_CTL_DMAFIRST_Msk;
        }
    }
    else
    {
        if ((SYS->CSERVER & SYS_CSERVER_VERSION_Msk) != 0x0)
        {
            //M480LD version
            CRPT->HMAC_CTL &= ~CRPT_HMAC_CTL_DMAFIRST_Msk;
        }
    }
    //Start SHA
    SHA_CLR_INT_FLAG(CRPT);
    SHA_Start(CRPT, u32Mode);

    /* Wait done */
    while (!(CRPT->INTSTS & CRPT_INTSTS_HMACIF_Msk)) {};

    if (CRPT->INTSTS & (CRPT_INTSTS_HMACEIF_Msk) || (CRPT->HMAC_STS & (CRPT_HMAC_STS_DMAERR_Msk)))
        rt_kprintf("SHA ERROR - CRPT->INTSTS-%08x, CRPT->HMAC_STS-%08x\n", CRPT->INTSTS, CRPT->HMAC_STS);

    /* Clear SHA interrupt status */
    SHA_CLR_INT_FLAG(CRPT);
}

static rt_err_t nu_sha_hash_run(
    S_SHA_CONTEXT *psSHACtx,
    uint32_t u32OpMode,
    uint8_t *pu8InData,
    uint32_t u32DataLen
)
{
    rt_err_t result;

    RT_ASSERT(psSHACtx != RT_NULL);
    RT_ASSERT(pu8InData != RT_NULL);

    result = rt_mutex_take(&s_SHA_mutex, RT_WAITING_FOREVER);
    RT_ASSERT(result == RT_EOK);

    uint8_t *pu8SrcAddr = (uint8_t *)pu8InData;
    uint32_t u32CopyLen = 0;

    while ((psSHACtx->u32SHATempBufLen + u32DataLen) > psSHACtx->u32BlockSize)
    {
        if (psSHACtx->pu8SHATempBuf)
        {
            if (psSHACtx->u32SHATempBufLen == psSHACtx->u32BlockSize)
            {
                //Trigger SHA block update
                SHABlockUpdate(u32OpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32BlockSize, psSHACtx->u32DMAMode);
                psSHACtx->u32DMAMode = CRYPTO_DMA_CONTINUE;
                //free SHATempBuff
                rt_free(psSHACtx->pu8SHATempBuf);
                psSHACtx->pu8SHATempBuf = NULL;
                psSHACtx->u32SHATempBufLen = 0;
                continue;
            }
            else
            {
                u32CopyLen = psSHACtx->u32BlockSize - psSHACtx->u32SHATempBufLen;
                if (u32DataLen < u32CopyLen)
                    u32CopyLen = u32DataLen;
                rt_memcpy(psSHACtx->pu8SHATempBuf + psSHACtx->u32SHATempBufLen, pu8SrcAddr, u32CopyLen);
                psSHACtx->u32SHATempBufLen += u32CopyLen;
                pu8SrcAddr += u32CopyLen;
                u32DataLen -= u32CopyLen;
                continue;
            }
        }

        if ((uint32_t) pu8SrcAddr & 3)  //address not aligned 4
        {
            psSHACtx->pu8SHATempBuf = rt_malloc(psSHACtx->u32BlockSize);

            if (psSHACtx->pu8SHATempBuf == RT_NULL)
            {
                LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, psSHACtx->u32BlockSize);
                result = rt_mutex_release(&s_SHA_mutex);
                RT_ASSERT(result == RT_EOK);
                return -RT_ENOMEM;
            }

            rt_memcpy(psSHACtx->pu8SHATempBuf, pu8SrcAddr, psSHACtx->u32BlockSize);
            psSHACtx->u32SHATempBufLen = psSHACtx->u32BlockSize;
            pu8SrcAddr += psSHACtx->u32BlockSize;
            u32DataLen -= psSHACtx->u32BlockSize;
            continue;
        }

        //Trigger SHA block update
        SHABlockUpdate(u32OpMode, (uint32_t)pu8SrcAddr, psSHACtx->u32BlockSize, psSHACtx->u32DMAMode);
        psSHACtx->u32DMAMode = CRYPTO_DMA_CONTINUE;

        pu8SrcAddr += psSHACtx->u32BlockSize;
        u32DataLen -= psSHACtx->u32BlockSize;
    }

    if (u32DataLen)
    {
        if (psSHACtx->pu8SHATempBuf == NULL)
        {
            psSHACtx->pu8SHATempBuf = rt_malloc(psSHACtx->u32BlockSize);

            if (psSHACtx->pu8SHATempBuf == RT_NULL)
            {
                LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, psSHACtx->u32BlockSize);
                result = rt_mutex_release(&s_SHA_mutex);
                RT_ASSERT(result == RT_EOK);
                return -RT_ENOMEM;
            }

            psSHACtx->u32SHATempBufLen = 0;
        }

        rt_memcpy(psSHACtx->pu8SHATempBuf, pu8SrcAddr, u32DataLen);
        psSHACtx->u32SHATempBufLen += u32DataLen;
    }

    result = rt_mutex_release(&s_SHA_mutex);
    RT_ASSERT(result == RT_EOK);

    return RT_EOK;
}

static rt_err_t nu_sha_update(struct hwcrypto_hash *hash_ctx, const rt_uint8_t *in, rt_size_t length)
{
    uint32_t u32SHAOpMode;
    unsigned char *nu_in;
    unsigned char in_align_flag = 0;
    RT_ASSERT(hash_ctx != RT_NULL);
    RT_ASSERT(in != RT_NULL);

    //Select SHA operation mode
    switch (hash_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
    {
    case HWCRYPTO_TYPE_SHA1:
        u32SHAOpMode = SHA_MODE_SHA1;
        break;
    case HWCRYPTO_TYPE_SHA224:
        u32SHAOpMode = SHA_MODE_SHA224;
        break;
    case HWCRYPTO_TYPE_SHA256:
        u32SHAOpMode = SHA_MODE_SHA256;
        break;
    case HWCRYPTO_TYPE_SHA384:
        u32SHAOpMode = SHA_MODE_SHA384;
        break;
    case HWCRYPTO_TYPE_SHA512:
        u32SHAOpMode = SHA_MODE_SHA512;
        break;
    default :
        return -RT_ERROR;
    }

    nu_in = (unsigned char *)in;

    //Checking in data buffer address not alignment or out of SRAM
    if (((rt_uint32_t)nu_in % 4) != 0 || ((rt_uint32_t)nu_in < SRAM_BASE) || ((rt_uint32_t)nu_in > SRAM_END))
    {
        nu_in = rt_malloc(length);
        if (nu_in == RT_NULL)
        {
            LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, length);
            return -RT_ENOMEM;
        }

        rt_memcpy(nu_in, in, length);
        in_align_flag = 1;
    }

    nu_sha_hash_run(hash_ctx->parent.contex, u32SHAOpMode, nu_in, length);

    if (in_align_flag)
    {
        rt_free(nu_in);
    }

    return RT_EOK;
}

static rt_err_t nu_sha_finish(struct hwcrypto_hash *hash_ctx, rt_uint8_t *out, rt_size_t length)
{
    unsigned char *nu_out;
    unsigned char out_align_flag = 0;
    uint32_t u32SHAOpMode;
    S_SHA_CONTEXT *psSHACtx = RT_NULL;
    RT_ASSERT(hash_ctx != RT_NULL);
    RT_ASSERT(out != RT_NULL);

    psSHACtx = hash_ctx->parent.contex;

    //Check SHA Hash value buffer length
    switch (hash_ctx->parent.type & (HWCRYPTO_MAIN_TYPE_MASK | HWCRYPTO_SUB_TYPE_MASK))
    {
    case HWCRYPTO_TYPE_SHA1:
        u32SHAOpMode = SHA_MODE_SHA1;
        if (length < 5UL)
        {
            return -RT_EINVAL;
        }
        break;
    case HWCRYPTO_TYPE_SHA224:
        u32SHAOpMode = SHA_MODE_SHA224;
        if (length < 7UL)
        {
            return -RT_EINVAL;
        }
        break;
    case HWCRYPTO_TYPE_SHA256:
        u32SHAOpMode = SHA_MODE_SHA256;
        if (length < 8UL)
        {
            return -RT_EINVAL;
        }
        break;
    case HWCRYPTO_TYPE_SHA384:
        u32SHAOpMode = SHA_MODE_SHA384;
        if (length < 12UL)
        {
            return -RT_EINVAL;
        }
        break;
    case HWCRYPTO_TYPE_SHA512:
        u32SHAOpMode = SHA_MODE_SHA512;
        if (length < 16UL)
        {
            return -RT_EINVAL;
        }
        break;
    default :
        return -RT_ERROR;
    }

    nu_out = (unsigned char *)out;

    //Checking out data buffer address alignment or not
    if (((rt_uint32_t)nu_out % 4) != 0)
    {
        nu_out = rt_malloc(length);
        if (nu_out == RT_NULL)
        {
            LOG_E("fun[%s] memory allocate %d bytes failed!", __FUNCTION__, length);
            return -RT_ENOMEM;
        }

        out_align_flag = 1;
    }

    if (psSHACtx->pu8SHATempBuf)
    {
        if (psSHACtx->u32DMAMode ==  CRYPTO_DMA_FIRST)
            SHABlockUpdate(u32SHAOpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32SHATempBufLen, CRYPTO_DMA_ONE_SHOT);
        else
            SHABlockUpdate(u32SHAOpMode, (uint32_t)psSHACtx->pu8SHATempBuf, psSHACtx->u32SHATempBufLen, CRYPTO_DMA_LAST);

        //free SHATempBuf
        rt_free(psSHACtx->pu8SHATempBuf);
        psSHACtx->pu8SHATempBuf = RT_NULL;
        psSHACtx->u32SHATempBufLen = 0;
    }
    else
    {
        SHABlockUpdate(u32SHAOpMode, (uint32_t)NULL, 0, CRYPTO_DMA_LAST);
    }

    SHA_Read(CRPT, (uint32_t *)nu_out);

    if (out_align_flag)
    {
        rt_memcpy(out, nu_out, length);
        rt_free(nu_out);
    }

    return RT_EOK;
}

static const struct hwcrypto_symmetric_ops nu_aes_ops =
{
    .crypt = nu_aes_crypt,
};

static const struct hwcrypto_symmetric_ops nu_des_ops =
{
    .crypt = nu_des_crypt,
};

static const struct hwcrypto_hash_ops nu_sha_ops =
{
    .update = nu_sha_update,
    .finish = nu_sha_finish,
};
#endif

/* CRC operation ------------------------------------------------------------*/
#if defined(BSP_USING_CRC)
static const struct hwcrypto_crc_ops nu_crc_ops =
{
    .update = nu_crc_update,
};
#endif

#if defined(RT_HWCRYPTO_USING_RNG)
    /* RNG operation ------------------------------------------------------------*/
    static struct hwcrypto_rng_ops nu_rng_ops;
#endif

/* Register crypto interface ----------------------------------------------------------*/
static rt_err_t nu_hwcrypto_create(struct rt_hwcrypto_ctx *ctx)
{
    rt_err_t res = RT_EOK;
    RT_ASSERT(ctx != RT_NULL);

    switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
    {
#if defined(RT_HWCRYPTO_USING_RNG)
    case HWCRYPTO_TYPE_RNG:
    {
        ctx->contex = RT_NULL;
        //Setup RNG operation
        ((struct hwcrypto_rng *)ctx)->ops = &nu_rng_ops;
        break;
    }
#endif /* RT_HWCRYPTO_USING_RNG */

#if defined(BSP_USING_CRC) && defined(RT_HWCRYPTO_USING_CRC)
    case HWCRYPTO_TYPE_CRC:
    {
        ctx->contex = RT_NULL;
        //Setup CRC operation
        ((struct hwcrypto_crc *)ctx)->ops = &nu_crc_ops;
        break;
    }
#endif /* BSP_USING_CRC && defined(RT_HWCRYPTO_USING_CRC) */

#if defined(BSP_USING_CRYPTO)
    case HWCRYPTO_TYPE_AES:
    {
        ctx->contex = RT_NULL;
        //Setup AES operation
        ((struct hwcrypto_symmetric *)ctx)->ops = &nu_aes_ops;
        break;
    }

    case HWCRYPTO_TYPE_DES:
    case HWCRYPTO_TYPE_3DES:
    {
        ctx->contex = RT_NULL;
        //Setup operation
        ((struct hwcrypto_symmetric *)ctx)->ops = &nu_des_ops;
        break;
    }


    case HWCRYPTO_TYPE_SHA1:
    case HWCRYPTO_TYPE_SHA2:
    {
        ctx->contex = rt_malloc(sizeof(S_SHA_CONTEXT));

        if (ctx->contex == RT_NULL)
            return -RT_ERROR;

        rt_memset(ctx->contex, 0, sizeof(S_SHA_CONTEXT));
        //Setup operation
        ((struct hwcrypto_hash *)ctx)->ops = &nu_sha_ops;
        break;
    }
#endif /* BSP_USING_CRYPTO */

    default:
        res = -RT_ERROR;
        break;
    }

    nu_hwcrypto_reset(ctx);

    return res;
}

static void nu_hwcrypto_destroy(struct rt_hwcrypto_ctx *ctx)
{
    RT_ASSERT(ctx != RT_NULL);

    if (ctx->contex)
        rt_free(ctx->contex);
}

static rt_err_t nu_hwcrypto_clone(struct rt_hwcrypto_ctx *des, const struct rt_hwcrypto_ctx *src)
{
    rt_err_t res = RT_EOK;
    RT_ASSERT(des != RT_NULL);
    RT_ASSERT(src != RT_NULL);

    if (des->contex && src->contex)
    {
        rt_memcpy(des->contex, src->contex, sizeof(struct rt_hwcrypto_ctx));
    }
    else
        return -RT_EINVAL;
    return res;
}

static void nu_hwcrypto_reset(struct rt_hwcrypto_ctx *ctx)
{
    switch (ctx->type & HWCRYPTO_MAIN_TYPE_MASK)
    {
#if defined(BSP_USING_CRYPTO)
    case HWCRYPTO_TYPE_SHA1:
    case HWCRYPTO_TYPE_SHA2:
    {
        S_SHA_CONTEXT *psSHACtx = (S_SHA_CONTEXT *)ctx->contex;

        if (psSHACtx->pu8SHATempBuf)
        {
            rt_free(psSHACtx->pu8SHATempBuf);
        }

        psSHACtx->pu8SHATempBuf = RT_NULL;
        psSHACtx->u32SHATempBufLen = 0;
        psSHACtx->u32DMAMode = CRYPTO_DMA_FIRST;

        if ((ctx->type == HWCRYPTO_TYPE_SHA384) || (ctx->type == HWCRYPTO_TYPE_SHA512))
        {
            psSHACtx->u32BlockSize = 128;
        }
        else
        {
            psSHACtx->u32BlockSize = 64;
        }
        break;
    }
#endif

    default:
        break;
    }
}

/* Init and register nu_hwcrypto_dev */
int nu_hwcrypto_device_init(void)
{
    rt_err_t result;
    static struct rt_hwcrypto_device nu_hwcrypto_dev;

    nu_hwcrypto_dev.ops = &nu_hwcrypto_ops;
    nu_hwcrypto_dev.id = 0;
    nu_hwcrypto_dev.user_data = &nu_hwcrypto_dev;

#if defined(BSP_USING_CRYPTO)
    nu_crypto_init();
#endif

#if defined(BSP_USING_CRC)
    nu_crc_init();
#endif

#if defined(RT_HWCRYPTO_USING_RNG)
#if defined(BSP_USING_TRNG)
    result = nu_trng_init();
    if (result == RT_EOK)
    {
        LOG_I("TRNG is used as default RNG.");
        nu_rng_ops.update = nu_trng_rand;
    }
    else
#endif
    {
        result = nu_prng_init();
        RT_ASSERT(result == RT_EOK);

        LOG_I("PRNG is used as default RNG.");
        nu_rng_ops.update = nu_prng_rand;
    }
#endif

    /* register hwcrypto operation */
    result = rt_hwcrypto_register(&nu_hwcrypto_dev, RT_HWCRYPTO_DEFAULT_NAME);
    RT_ASSERT(result == RT_EOK);

    return 0;
}
INIT_DEVICE_EXPORT(nu_hwcrypto_device_init);

#endif //#if ((defined(BSP_USING_CRYPTO) || defined(BSP_USING_TRNG) || defined(BSP_USING_CRC)) && defined(RT_USING_HWCRYPTO))