/* * Copyright (c) 2006-2024, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2024-03-04 ShichengChu the first version */ #include #include #ifdef BSP_USING_RTC #define DBG_TAG "DRV.RTC" #define DBG_LVL DBG_WARNING #include #include "pinctrl.h" #include "mmio.h" #define CVI_RTC_BASE 0x05026000U #define RTC_ALARM_O 17 #define CVI_RTC_CTRL_BASE 0x05025000U #define CLK_EN_0 0x03002000U #define CLK_RTC_25M_BIT (1 << 8) /* CVITEK RTC registers */ #define CVI_RTC_ANA_CALIB 0x0 #define CVI_RTC_SEC_PULSE_GEN 0x4 #define CVI_RTC_ALARM_TIME 0x8 #define CVI_RTC_ALARM_ENABLE 0xC #define CVI_RTC_SET_SEC_CNTR_VALUE 0x10 #define CVI_RTC_SET_SEC_CNTR_TRIG 0x14 #define CVI_RTC_SEC_CNTR_VALUE 0x18 #define CVI_RTC_APB_RDATA_SEL 0x3C #define CVI_RTC_POR_DB_MAGIC_KEY 0x68 #define CVI_RTC_EN_PWR_WAKEUP 0xBC #define CVI_RTC_PWR_DET_SEL 0x140 /* CVITEK RTC MACRO registers */ #define RTC_MACRO_DA_CLEAR_ALL 0x480 #define RTC_MACRO_DA_SOC_READY 0x48C #define RTC_MACRO_RO_T 0x4A8 #define RTC_MACRO_RG_SET_T 0x498 /* CVITEK RTC CTRL registers */ #define CVI_RTC_FC_COARSE_EN 0x40 #define CVI_RTC_FC_COARSE_CAL 0x44 #define CVI_RTC_FC_FINE_EN 0x48 #define CVI_RTC_FC_FINE_CAL 0x50 #define RTC_SEC_MAX_VAL 0xFFFFFFFF #define RTC_OFFSET_SN 0x5201800 #define RTC_ALARM_IRQ_NUM 0x11 struct rtc_device_object { rt_rtc_dev_t rtc_dev; }; static struct rtc_device_object rtc_device; #define LEAPS_THRU_END_OF(y) ((y)/4 - (y)/100 + (y)/400) typedef struct { int tm_sec; ///< Second. [0-59] int tm_min; ///< Minute. [0-59] int tm_hour; ///< Hour. [0-23] int tm_mday; ///< Day. [1-31] int tm_mon; ///< Month. [0-11] int tm_year; ///< Year-1900. [70- ] !NOTE:Set 100 mean 2000 int tm_wday; ///< Day of week. [0-6 ] !NOTE:Set 0 mean Sunday int tm_yday; ///< Days in year.[0-365] !NOTE:Set 0 mean January 1st } cvi_rtc_time_t; static const unsigned char cvi_rtc_days_in_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static inline int is_leap_year(unsigned int year) { return (!(year % 4) && (year % 100)) || !(year % 400); } static int rtc_month_days(unsigned int month, unsigned int year) { return cvi_rtc_days_in_month[month] + (is_leap_year(year) && month == 1); } static void hal_cvi_rtc_clk_set(int enable) { uint32_t clk_state; clk_state = mmio_read_32((long unsigned int)CLK_EN_0); if(enable) clk_state |= CLK_RTC_25M_BIT; else clk_state &= ~(CLK_RTC_25M_BIT); mmio_write_32((long unsigned int)CLK_EN_0, clk_state); } static void hal_cvi_rtc_enable_sec_counter(uintptr_t rtc_base) { uint32_t value = 0; value = mmio_read_32(rtc_base + CVI_RTC_SEC_PULSE_GEN) & ~(1 << 31); mmio_write_32(rtc_base + CVI_RTC_SEC_PULSE_GEN, value); value = mmio_read_32(rtc_base + CVI_RTC_ANA_CALIB) & ~(1 << 31); mmio_write_32(rtc_base + CVI_RTC_ANA_CALIB, value); mmio_read_32(rtc_base + CVI_RTC_SEC_CNTR_VALUE); mmio_write_32(rtc_base + CVI_RTC_ALARM_ENABLE, 0x0); } static void hal_cvi_rtc_set_time(uintptr_t rtc_base, unsigned long sec) { mmio_write_32(rtc_base + CVI_RTC_SET_SEC_CNTR_VALUE, sec); mmio_write_32(rtc_base + CVI_RTC_SET_SEC_CNTR_TRIG, 1); mmio_write_32(rtc_base + RTC_MACRO_RG_SET_T, sec); mmio_write_32(rtc_base + RTC_MACRO_DA_CLEAR_ALL, 1); mmio_write_32(rtc_base + RTC_MACRO_DA_SOC_READY, 1); mmio_write_32(rtc_base + RTC_MACRO_DA_CLEAR_ALL, 0); mmio_write_32(rtc_base + RTC_MACRO_RG_SET_T, 0); mmio_write_32(rtc_base + RTC_MACRO_DA_SOC_READY, 0); } static int hal_cvi_rtc_get_time_sec(uintptr_t rtc_base,unsigned long *ret_sec) { int ret = 0; unsigned long sec; unsigned long sec_ro_t; sec = mmio_read_32(rtc_base + CVI_RTC_SEC_CNTR_VALUE); sec_ro_t = mmio_read_32(rtc_base + RTC_MACRO_RO_T); LOG_D("sec=%lx, sec_ro_t=%lx\n", sec, sec_ro_t); if (sec_ro_t > 0x30000000) { sec = sec_ro_t; // Writeback to SEC CVI_RTC_SEC_CNTR_VALUE mmio_write_32(rtc_base + CVI_RTC_SET_SEC_CNTR_VALUE, sec); mmio_write_32(rtc_base + CVI_RTC_SET_SEC_CNTR_TRIG, 1); } else if (sec < 0x30000000) { LOG_D("RTC invalid time\n"); ret = -EINVAL; } *ret_sec = sec; return ret; } static inline int64_t div_u64_rem(uint64_t dividend, uint32_t divisor, uint32_t *remainder) { *remainder = dividend % divisor; return dividend / divisor; } /* * rtc_time_to_tm64 - Converts time64_t to rtc_time. * Convert seconds since 01-01-1970 00:00:00 to Gregorian date. */ static void rtc_time64_to_tm(int64_t time, cvi_rtc_time_t *cvi_tm) { unsigned int month, year, secs; int days; /* time must be positive */ days = div_u64_rem(time, 86400, &secs); /* day of the week, 1970-01-01 was a Thursday */ cvi_tm->tm_wday = (days + 4) % 7; year = 1970 + days / 365; days -= (year - 1970) * 365 + LEAPS_THRU_END_OF(year - 1) - LEAPS_THRU_END_OF(1970 - 1); while (days < 0) { year -= 1; days += 365 + is_leap_year(year); } cvi_tm->tm_year = year - 1900; cvi_tm->tm_yday = days + 1; for (month = 0; month < 11; month++) { int newdays; newdays = days - rtc_month_days(month, year); if (newdays < 0) break; days = newdays; } cvi_tm->tm_mon = month; cvi_tm->tm_mday = days + 1; cvi_tm->tm_hour = secs / 3600; secs -= cvi_tm->tm_hour * 3600; cvi_tm->tm_min = secs / 60; cvi_tm->tm_sec = secs - cvi_tm->tm_min * 60; } static int64_t mktime64(const unsigned int year0, const unsigned int mon0, const unsigned int day, const unsigned int hour, const unsigned int min, const unsigned int sec) { unsigned int mon = mon0, year = year0; /* 1..12 -> 11,12,1..10 */ if (0 >= (int) (mon -= 2)) { mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } return ((((int64_t) (year/4 - year/100 + year/400 + 367*mon/12 + day) + year*365 - 719499 )*24 + hour /* now have hours - midnight tomorrow handled here */ )*60 + min /* now have minutes */ )*60 + sec; /* finally seconds */ } /* * rtc_tm_to_time64 - Converts rtc_time to time64_t. * Convert Gregorian date to seconds since 01-01-1970 00:00:00. */ static int64_t rtc_tm_to_time64(const cvi_rtc_time_t *cvi_tm) { return mktime64(cvi_tm->tm_year + 1900, cvi_tm->tm_mon + 1, cvi_tm->tm_mday, cvi_tm->tm_hour, cvi_tm->tm_min, cvi_tm->tm_sec); } static rt_err_t _rtc_get_timeval(struct timeval *tv) { unsigned long sec; cvi_rtc_time_t t = {0}; struct tm tm_new = {0}; hal_cvi_rtc_get_time_sec(CVI_RTC_BASE, &sec); rtc_time64_to_tm(sec, &t); tm_new.tm_sec = t.tm_sec; tm_new.tm_min = t.tm_min; tm_new.tm_hour = t.tm_hour; tm_new.tm_wday = t.tm_wday; tm_new.tm_mday = t.tm_mday; tm_new.tm_mon = t.tm_mon; tm_new.tm_year = t.tm_year; tv->tv_sec = timegm(&tm_new); return RT_EOK; } static rt_err_t _rtc_init(void) { hal_cvi_rtc_clk_set(1); hal_cvi_rtc_enable_sec_counter(CVI_RTC_BASE); return RT_EOK; } static rt_err_t _rtc_get_secs(time_t *sec) { struct timeval tv; _rtc_get_timeval(&tv); *(time_t *) sec = tv.tv_sec; LOG_D("RTC: get rtc_time %d", *sec); return RT_EOK; } static rt_err_t _rtc_set_secs(time_t *sec) { rt_err_t result = RT_EOK; cvi_rtc_time_t t = {0}; struct tm tm = {0}; unsigned long set_sec; gmtime_r(sec, &tm); t.tm_sec = tm.tm_sec; t.tm_min = tm.tm_min; t.tm_hour = tm.tm_hour; t.tm_mday = tm.tm_mday; t.tm_mon = tm.tm_mon; t.tm_year = tm.tm_year; t.tm_wday = tm.tm_wday; set_sec = rtc_tm_to_time64(&t); hal_cvi_rtc_set_time(CVI_RTC_BASE, set_sec); return result; } #ifdef RT_USING_ALARM static void rtc_alarm_enable(rt_bool_t enable) { mmio_write_32(CVI_RTC_BASE + CVI_RTC_ALARM_ENABLE, enable); } static void rt_hw_rtc_isr(int irqno, void *param) { rt_interrupt_enter(); /* send event to alarm */ rt_alarm_update(&rtc_device.rtc_dev.parent, 1); /* clear alarm */ rtc_alarm_enable(0); rt_interrupt_leave(); } #endif static rt_err_t _rtc_get_alarm(struct rt_rtc_wkalarm *alarm) { if (alarm == RT_NULL) return -RT_ERROR; unsigned long int sec; cvi_rtc_time_t t = {0}; sec = mmio_read_32(CVI_RTC_BASE + CVI_RTC_ALARM_TIME); rtc_time64_to_tm(sec, &t); alarm->tm_sec = t.tm_sec; alarm->tm_min = t.tm_min; alarm->tm_hour = t.tm_hour; alarm->tm_mday = t.tm_mday; alarm->tm_mon = t.tm_mon; alarm->tm_year = t.tm_year; LOG_D("GET_ALARM %d:%d:%d", alarm->tm_hour, alarm->tm_min, alarm->tm_sec); return RT_EOK; } static rt_err_t _rtc_set_alarm(struct rt_rtc_wkalarm *alarm) { if (alarm == RT_NULL) return -RT_ERROR; cvi_rtc_time_t t = {0}; unsigned long int set_sec; if (alarm->enable){ t.tm_sec = alarm->tm_sec; t.tm_min = alarm->tm_min; t.tm_hour = alarm->tm_hour; t.tm_mday = alarm->tm_mday; t.tm_mon = alarm->tm_mon; t.tm_year = alarm->tm_year; set_sec = rtc_tm_to_time64(&t); mmio_write_32(CVI_RTC_BASE + CVI_RTC_ALARM_TIME, set_sec); LOG_D("GET_ALARM %d:%d:%d", alarm->tm_hour, alarm->tm_min, alarm->tm_sec); } rtc_alarm_enable(alarm->enable); return RT_EOK; } static const struct rt_rtc_ops _rtc_ops = { _rtc_init, _rtc_get_secs, _rtc_set_secs, #ifdef RT_USING_ALARM _rtc_get_alarm, _rtc_set_alarm, #else RT_NULL, RT_NULL, #endif _rtc_get_timeval, RT_NULL, }; static int rt_hw_rtc_init(void) { rt_err_t result; rtc_device.rtc_dev.ops = &_rtc_ops; result = rt_hw_rtc_register(&rtc_device.rtc_dev, "rtc", RT_DEVICE_FLAG_RDWR, RT_NULL); if (result != RT_EOK) { LOG_E("rtc register err code: %d", result); return result; } #ifdef RT_USING_ALARM rt_hw_interrupt_install(RTC_ALARM_IRQ_NUM, rt_hw_rtc_isr, RT_NULL, "rtc"); rt_hw_interrupt_umask(RTC_ALARM_IRQ_NUM); #endif LOG_D("rtc init success"); return RT_EOK; } INIT_DEVICE_EXPORT(rt_hw_rtc_init); #endif /* BSP_USING_RTC */