#include "nordic_common.h" #include "nrf.h" #include "ble_hci.h" #include "ble_advdata.h" #include "ble_advertising.h" #include "ble_conn_params.h" #include "softdevice_handler.h" #include "nrf_ble_gatt.h" #include "app_timer.h" #include "ble_nus.h" #include "app_util_platform.h" #include typedef rt_size_t (*BLE_NOTIFY_T)(rt_uint8_t *buf, rt_uint16_t size); #define STACK_EVT_MQ_NUM 10 #define FAST_ADV() \ do { \ uint32_t err_code; \ err_code = ble_advertising_start(BLE_ADV_MODE_FAST); \ APP_ERROR_CHECK(err_code); \ } while(0) typedef enum { STACK_EV_DISCON = 1, STACK_EV_DISPATCH = 2, STACK_EV_KEY = 4, } STACK_EV_E; typedef struct { rt_list_t node; void* evt; } evt_list_t; typedef enum { STACK_STATE_IDLE = 0, STACK_STATE_ADV = 1, STACK_STATE_CON = 2, STACK_STATE_DISC = 3 } STACK_STATE_E; STACK_STATE_E stack_state = STACK_STATE_IDLE; rt_event_t stack_event; rt_sem_t sd_evt_sem; rt_mq_t stack_evt_mq; rt_uint8_t *evt_sample; BLE_NOTIFY_T rx_notify = RT_NULL; // Low frequency clock source to be used by the SoftDevice #define NRF_CLOCK_LFCLKSRC {.source = NRF_CLOCK_LF_SRC_XTAL, \ .rc_ctiv = 0, \ .rc_temp_ctiv = 0, \ .xtal_accuracy = NRF_CLOCK_LF_XTAL_ACCURACY_20_PPM} #define CONN_CFG_TAG 1 /**< A tag that refers to the BLE stack configuration we set with @ref sd_ble_cfg_set. Default tag is @ref BLE_CONN_CFG_TAG_DEFAULT. */ #define APP_FEATURE_NOT_SUPPORTED BLE_GATT_STATUS_ATTERR_APP_BEGIN + 2 /**< Reply when unsupported features are requested. */ #define DEVICE_NAME "Nordic_UART" /**< Name of device. Will be included in the advertising data. */ #define NUS_SERVICE_UUID_TYPE BLE_UUID_TYPE_VENDOR_BEGIN /**< UUID type for the Nordic UART Service (vendor specific). */ #define APP_ADV_INTERVAL 64 /**< The advertising interval (in units of 0.625 ms. This value corresponds to 40 ms). */ #define APP_ADV_TIMEOUT_IN_SECONDS 30 /**< The advertising timeout (in units of seconds). */ #define MIN_CONN_INTERVAL MSEC_TO_UNITS(20, UNIT_1_25_MS) /**< Minimum acceptable connection interval (20 ms), Connection interval uses 1.25 ms units. */ #define MAX_CONN_INTERVAL MSEC_TO_UNITS(75, UNIT_1_25_MS) /**< Maximum acceptable connection interval (75 ms), Connection interval uses 1.25 ms units. */ #define SLAVE_LATENCY 0 /**< Slave latency. */ #define CONN_SUP_TIMEOUT MSEC_TO_UNITS(4000, UNIT_10_MS) /**< Connection supervisory timeout (4 seconds), Supervision Timeout uses 10 ms units. */ #define FIRST_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(5000) /**< Time from initiating event (connect or start of notification) to first time sd_ble_gap_conn_param_update is called (5 seconds). */ #define NEXT_CONN_PARAMS_UPDATE_DELAY APP_TIMER_TICKS(30000) /**< Time between each call to sd_ble_gap_conn_param_update after the first call (30 seconds). */ #define MAX_CONN_PARAMS_UPDATE_COUNT 3 /**< Number of attempts before giving up the connection parameter negotiation. */ #define DEAD_BEEF 0xDEADBEEF /**< Value used as error code on stack dump, can be used to identify stack location on stack unwind. */ #define UART_TX_BUF_SIZE 256 /**< UART TX buffer size. */ #define UART_RX_BUF_SIZE 256 /**< UART RX buffer size. */ static ble_nus_t m_nus; /**< Structure to identify the Nordic UART Service. */ static uint16_t m_conn_handle = BLE_CONN_HANDLE_INVALID; /**< Handle of the current connection. */ static nrf_ble_gatt_t m_gatt; /**< GATT module instance. */ static ble_uuid_t m_adv_uuids[] = {{BLE_UUID_NUS_SERVICE, NUS_SERVICE_UUID_TYPE}}; /**< Universally unique service identifier. */ static uint16_t m_ble_nus_max_data_len = BLE_GATT_ATT_MTU_DEFAULT - 3; /**< Maximum length of data (in bytes) that can be transmitted to the peer by the Nordic UART service module. */ /**@brief Function for assert macro callback. * * @details This function will be called in case of an assert in the SoftDevice. * * @warning This handler is an example only and does not fit a final product. You need to analyse * how your product is supposed to react in case of Assert. * @warning On assert from the SoftDevice, the system can only recover on reset. * * @param[in] line_num Line number of the failing ASSERT call. * @param[in] p_file_name File name of the failing ASSERT call. */ void assert_nrf_callback(uint16_t line_num, const uint8_t * p_file_name) { app_error_handler(DEAD_BEEF, line_num, p_file_name); } /**@brief Function for the GAP initialization. * * @details This function will set up all the necessary GAP (Generic Access Profile) parameters of * the device. It also sets the permissions and appearance. */ static void gap_params_init(void) { uint32_t err_code; ble_gap_conn_params_t gap_conn_params; ble_gap_conn_sec_mode_t sec_mode; BLE_GAP_CONN_SEC_MODE_SET_OPEN(&sec_mode); err_code = sd_ble_gap_device_name_set(&sec_mode, (const uint8_t *) DEVICE_NAME, strlen(DEVICE_NAME)); APP_ERROR_CHECK(err_code); memset(&gap_conn_params, 0, sizeof(gap_conn_params)); gap_conn_params.min_conn_interval = MIN_CONN_INTERVAL; gap_conn_params.max_conn_interval = MAX_CONN_INTERVAL; gap_conn_params.slave_latency = SLAVE_LATENCY; gap_conn_params.conn_sup_timeout = CONN_SUP_TIMEOUT; err_code = sd_ble_gap_ppcp_set(&gap_conn_params); APP_ERROR_CHECK(err_code); } /**@brief Function for handling the data from the Nordic UART Service. * * @details This function will process the data received from the Nordic UART BLE Service and send * it to the UART module. * * @param[in] p_nus Nordic UART Service structure. * @param[in] p_data Data to be send to UART module. * @param[in] length Length of the data. */ /**@snippet [Handling the data received over BLE] */ static void nus_data_handler(ble_nus_t * p_nus, uint8_t * p_data, uint16_t length) { rt_kprintf("Received data from BLE NUS. Writing data on UART.\r\n"); for (uint32_t i = 0; i < length; i++) { rt_kprintf("%02x ", p_data[i]); } // ble_send(p_data, length); if (rx_notify != RT_NULL) { rx_notify(p_data, length); } } /**@snippet [Handling the data received over BLE] */ /**@brief Function for initializing services that will be used by the application. */ static void services_init(void) { uint32_t err_code; ble_nus_init_t nus_init; memset(&nus_init, 0, sizeof(nus_init)); nus_init.data_handler = nus_data_handler; err_code = ble_nus_init(&m_nus, &nus_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling an event from the Connection Parameters Module. * * @details This function will be called for all events in the Connection Parameters Module * which are passed to the application. * * @note All this function does is to disconnect. This could have been done by simply setting * the disconnect_on_fail config parameter, but instead we use the event handler * mechanism to demonstrate its use. * * @param[in] p_evt Event received from the Connection Parameters Module. */ static void on_conn_params_evt(ble_conn_params_evt_t * p_evt) { uint32_t err_code; if (p_evt->evt_type == BLE_CONN_PARAMS_EVT_FAILED) { err_code = sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_CONN_INTERVAL_UNACCEPTABLE); APP_ERROR_CHECK(err_code); } } /**@brief Function for handling errors from the Connection Parameters module. * * @param[in] nrf_error Error code containing information about what went wrong. */ static void conn_params_error_handler(uint32_t nrf_error) { APP_ERROR_HANDLER(nrf_error); } /**@brief Function for initializing the Connection Parameters module. */ static void conn_params_init(void) { uint32_t err_code; ble_conn_params_init_t cp_init; memset(&cp_init, 0, sizeof(cp_init)); cp_init.p_conn_params = NULL; cp_init.first_conn_params_update_delay = FIRST_CONN_PARAMS_UPDATE_DELAY; cp_init.next_conn_params_update_delay = NEXT_CONN_PARAMS_UPDATE_DELAY; cp_init.max_conn_params_update_count = MAX_CONN_PARAMS_UPDATE_COUNT; cp_init.start_on_notify_cccd_handle = BLE_GATT_HANDLE_INVALID; cp_init.disconnect_on_fail = false; cp_init.evt_handler = on_conn_params_evt; cp_init.error_handler = conn_params_error_handler; err_code = ble_conn_params_init(&cp_init); APP_ERROR_CHECK(err_code); } /**@brief Function for handling advertising events. * * @details This function will be called for advertising events which are passed to the application. * * @param[in] ble_adv_evt Advertising event. */ static void on_adv_evt(ble_adv_evt_t ble_adv_evt) { // uint32_t err_code; switch (ble_adv_evt) { case BLE_ADV_EVT_FAST: // err_code = bsp_indication_set(BSP_INDICATE_ADVERTISING); // APP_ERROR_CHECK(err_code); stack_state = STACK_STATE_ADV; rt_kprintf("ble fast advert\n"); break; case BLE_ADV_EVT_IDLE: // sleep_mode_enter(); stack_state = STACK_STATE_IDLE; rt_kprintf("advert idle\n"); break; default: break; } } /**@brief Function for the application's SoftDevice event handler. * * @param[in] p_ble_evt SoftDevice event. */ static void on_ble_evt(ble_evt_t * p_ble_evt) { uint32_t err_code; switch (p_ble_evt->header.evt_id) { case BLE_GAP_EVT_CONNECTED: // err_code = bsp_indication_set(BSP_INDICATE_CONNECTED); // APP_ERROR_CHECK(err_code); m_conn_handle = p_ble_evt->evt.gap_evt.conn_handle; stack_state = STACK_STATE_CON; rt_kprintf("Connected\r\n"); break; // BLE_GAP_EVT_CONNECTED case BLE_GAP_EVT_DISCONNECTED: // err_code = bsp_indication_set(BSP_INDICATE_IDLE); // APP_ERROR_CHECK(err_code); m_conn_handle = BLE_CONN_HANDLE_INVALID; stack_state = STACK_STATE_DISC; rt_kprintf("Disconnected\r\n"); break; // BLE_GAP_EVT_DISCONNECTED case BLE_GAP_EVT_SEC_PARAMS_REQUEST: // Pairing not supported err_code = sd_ble_gap_sec_params_reply(m_conn_handle, BLE_GAP_SEC_STATUS_PAIRING_NOT_SUPP, NULL, NULL); APP_ERROR_CHECK(err_code); break; // BLE_GAP_EVT_SEC_PARAMS_REQUEST case BLE_GAP_EVT_DATA_LENGTH_UPDATE_REQUEST: { ble_gap_data_length_params_t dl_params; // Clearing the struct will effectivly set members to @ref BLE_GAP_DATA_LENGTH_AUTO memset(&dl_params, 0, sizeof(ble_gap_data_length_params_t)); err_code = sd_ble_gap_data_length_update(p_ble_evt->evt.gap_evt.conn_handle, &dl_params, NULL); APP_ERROR_CHECK(err_code); } break; case BLE_GATTS_EVT_SYS_ATTR_MISSING: // No system attributes have been stored. err_code = sd_ble_gatts_sys_attr_set(m_conn_handle, NULL, 0, 0); APP_ERROR_CHECK(err_code); break; // BLE_GATTS_EVT_SYS_ATTR_MISSING case BLE_GATTC_EVT_TIMEOUT: // Disconnect on GATT Client timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gattc_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; // BLE_GATTC_EVT_TIMEOUT case BLE_GATTS_EVT_TIMEOUT: // Disconnect on GATT Server timeout event. err_code = sd_ble_gap_disconnect(p_ble_evt->evt.gatts_evt.conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); APP_ERROR_CHECK(err_code); break; // BLE_GATTS_EVT_TIMEOUT case BLE_EVT_USER_MEM_REQUEST: err_code = sd_ble_user_mem_reply(p_ble_evt->evt.gattc_evt.conn_handle, NULL); APP_ERROR_CHECK(err_code); break; // BLE_EVT_USER_MEM_REQUEST case BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST: { ble_gatts_evt_rw_authorize_request_t req; ble_gatts_rw_authorize_reply_params_t auth_reply; req = p_ble_evt->evt.gatts_evt.params.authorize_request; if (req.type != BLE_GATTS_AUTHORIZE_TYPE_INVALID) { if ((req.request.write.op == BLE_GATTS_OP_PREP_WRITE_REQ) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_NOW) || (req.request.write.op == BLE_GATTS_OP_EXEC_WRITE_REQ_CANCEL)) { if (req.type == BLE_GATTS_AUTHORIZE_TYPE_WRITE) { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_WRITE; } else { auth_reply.type = BLE_GATTS_AUTHORIZE_TYPE_READ; } auth_reply.params.write.gatt_status = APP_FEATURE_NOT_SUPPORTED; err_code = sd_ble_gatts_rw_authorize_reply(p_ble_evt->evt.gatts_evt.conn_handle, &auth_reply); APP_ERROR_CHECK(err_code); } } } break; // BLE_GATTS_EVT_RW_AUTHORIZE_REQUEST default: // No implementation needed. break; } } /**@brief Function for dispatching a SoftDevice event to all modules with a SoftDevice * event handler. * * @details This function is called from the SoftDevice event interrupt handler after a * SoftDevice event has been received. * * @param[in] p_ble_evt SoftDevice event. */ static void ble_evt_dispatch(ble_evt_t * p_ble_evt) { if (rt_mq_send(stack_evt_mq, p_ble_evt, p_ble_evt->header.evt_len) != RT_EOK) { rt_kprintf("dispatch malloc failure\n"); } else { rt_event_send(stack_event, STACK_EV_DISPATCH); } } static rt_err_t evt_dispatch_worker(void) { ble_evt_t * p_ble_evt = (ble_evt_t *)evt_sample; rt_err_t err; err = rt_mq_recv(stack_evt_mq, (void*)evt_sample, BLE_STACK_EVT_MSG_BUF_SIZE, RT_WAITING_NO); if (RT_EOK == err) { ble_conn_params_on_ble_evt(p_ble_evt); nrf_ble_gatt_on_ble_evt(&m_gatt, p_ble_evt); ble_nus_on_ble_evt(&m_nus, p_ble_evt); on_ble_evt(p_ble_evt); ble_advertising_on_ble_evt(p_ble_evt); // bsp_btn_ble_on_ble_evt(p_ble_evt); rt_kprintf("ble evt dispatch\n"); } return err; } static uint32_t _softdevice_evt_schedule(void) { rt_sem_release(sd_evt_sem); return NRF_SUCCESS; } /**@brief Function for the SoftDevice initialization. * * @details This function initializes the SoftDevice and the BLE event interrupt. */ static void ble_stack_init(void) { uint32_t err_code; nrf_clock_lf_cfg_t clock_lf_cfg = NRF_CLOCK_LFCLKSRC; // Initialize SoftDevice. SOFTDEVICE_HANDLER_INIT(&clock_lf_cfg, _softdevice_evt_schedule); // Fetch the start address of the application RAM. uint32_t ram_start = 0; err_code = softdevice_app_ram_start_get(&ram_start); APP_ERROR_CHECK(err_code); // Overwrite some of the default configurations for the BLE stack. ble_cfg_t ble_cfg; // Configure the maximum number of connections. memset(&ble_cfg, 0, sizeof(ble_cfg)); ble_cfg.gap_cfg.role_count_cfg.periph_role_count = BLE_GAP_ROLE_COUNT_PERIPH_DEFAULT; ble_cfg.gap_cfg.role_count_cfg.central_role_count = 0; ble_cfg.gap_cfg.role_count_cfg.central_sec_count = 0; err_code = sd_ble_cfg_set(BLE_GAP_CFG_ROLE_COUNT, &ble_cfg, ram_start); APP_ERROR_CHECK(err_code); // Configure the maximum ATT MTU. memset(&ble_cfg, 0x00, sizeof(ble_cfg)); ble_cfg.conn_cfg.conn_cfg_tag = CONN_CFG_TAG; ble_cfg.conn_cfg.params.gatt_conn_cfg.att_mtu = NRF_BLE_GATT_MAX_MTU_SIZE; err_code = sd_ble_cfg_set(BLE_CONN_CFG_GATT, &ble_cfg, ram_start); APP_ERROR_CHECK(err_code); // Configure the maximum event length. memset(&ble_cfg, 0x00, sizeof(ble_cfg)); ble_cfg.conn_cfg.conn_cfg_tag = CONN_CFG_TAG; ble_cfg.conn_cfg.params.gap_conn_cfg.event_length = 320; ble_cfg.conn_cfg.params.gap_conn_cfg.conn_count = BLE_GAP_CONN_COUNT_DEFAULT; err_code = sd_ble_cfg_set(BLE_CONN_CFG_GAP, &ble_cfg, ram_start); APP_ERROR_CHECK(err_code); // Enable BLE stack. err_code = softdevice_enable(&ram_start); APP_ERROR_CHECK(err_code); // Subscribe for BLE events. err_code = softdevice_ble_evt_handler_set(ble_evt_dispatch); APP_ERROR_CHECK(err_code); } /**@brief Function for handling events from the GATT library. */ static void gatt_evt_handler(nrf_ble_gatt_t * p_gatt, const nrf_ble_gatt_evt_t * p_evt) { if ((m_conn_handle == p_evt->conn_handle) && (p_evt->evt_id == NRF_BLE_GATT_EVT_ATT_MTU_UPDATED)) { m_ble_nus_max_data_len = p_evt->params.att_mtu_effective - OPCODE_LENGTH - HANDLE_LENGTH; rt_kprintf("Data len is set to 0x%X(%d)\r\n", m_ble_nus_max_data_len, m_ble_nus_max_data_len); } rt_kprintf("ATT MTU exchange completed. central 0x%x peripheral 0x%x\r\n", p_gatt->att_mtu_desired_central, p_gatt->att_mtu_desired_periph); } /**@brief Function for initializing the GATT library. */ static void gatt_init(void) { ret_code_t err_code; err_code = nrf_ble_gatt_init(&m_gatt, gatt_evt_handler); APP_ERROR_CHECK(err_code); err_code = nrf_ble_gatt_att_mtu_periph_set(&m_gatt, 64); APP_ERROR_CHECK(err_code); } /**@brief Function for initializing the Advertising functionality. */ static void advertising_init(void) { uint32_t err_code; ble_advdata_t advdata; ble_advdata_t scanrsp; ble_adv_modes_config_t options; // Build advertising data struct to pass into @ref ble_advertising_init. memset(&advdata, 0, sizeof(advdata)); advdata.name_type = BLE_ADVDATA_FULL_NAME; advdata.include_appearance = false; advdata.flags = BLE_GAP_ADV_FLAGS_LE_ONLY_LIMITED_DISC_MODE; memset(&scanrsp, 0, sizeof(scanrsp)); scanrsp.uuids_complete.uuid_cnt = sizeof(m_adv_uuids) / sizeof(m_adv_uuids[0]); scanrsp.uuids_complete.p_uuids = m_adv_uuids; memset(&options, 0, sizeof(options)); options.ble_adv_fast_enabled = true; options.ble_adv_fast_interval = APP_ADV_INTERVAL; options.ble_adv_fast_timeout = APP_ADV_TIMEOUT_IN_SECONDS; err_code = ble_advertising_init(&advdata, &scanrsp, &options, on_adv_evt, NULL); APP_ERROR_CHECK(err_code); ble_advertising_conn_cfg_tag_set(CONN_CFG_TAG); } /**@brief Function for handling app_uart events. * * @details This function will receive a single character from the app_uart module and append it to * a string. The string will be be sent over BLE when the last character received was a * 'new line' '\n' (hex 0x0A) or if the string has reached the maximum data length. */ /**@snippet [Handling the data received over UART] */ void uart_event_handle(rt_device_t uart) { uint8_t data_array[BLE_NUS_MAX_DATA_LEN]; rt_size_t size = 0; uint32_t err_code; size = rt_device_read(uart, 0, data_array, BLE_NUS_MAX_DATA_LEN); if (size <= 0) { return; } do { err_code = ble_nus_string_send(&m_nus, data_array, size); if ( (err_code != NRF_ERROR_INVALID_STATE) && (err_code != NRF_ERROR_BUSY) ) { APP_ERROR_CHECK(err_code); } } while (err_code == NRF_ERROR_BUSY); } /**@snippet [Handling the data received over UART] */ /**@brief Function for initializing the UART module. */ /**@snippet [UART Initialization] */ static rt_bool_t _stack_init(void) { uint32_t err_code; stack_event = rt_event_create("stackev", RT_IPC_FLAG_FIFO); sd_evt_sem = rt_sem_create("sdsem", 0, RT_IPC_FLAG_FIFO); stack_evt_mq = rt_mq_create("stackmq", BLE_STACK_EVT_MSG_BUF_SIZE, STACK_EVT_MQ_NUM, RT_IPC_FLAG_FIFO); evt_sample = rt_malloc(BLE_STACK_EVT_MSG_BUF_SIZE); if (!stack_event || !sd_evt_sem || !stack_evt_mq || !evt_sample) { rt_kprintf("uart rx sem create failure\n"); return RT_FALSE; } // Initialize. err_code = app_timer_init(); APP_ERROR_CHECK(err_code); ble_stack_init(); gap_params_init(); gatt_init(); services_init(); advertising_init(); conn_params_init(); return RT_TRUE; } /**@brief Application main function. */ static void _stack_thread(void *parameter) { rt_tick_t next_timeout = (rt_tick_t)RT_WAITING_FOREVER; FAST_ADV(); // Enter main loop. for (;;) { rt_uint32_t event = 0; rt_tick_t dispatch_timeout = RT_WAITING_NO; rt_event_recv(stack_event, STACK_EV_DISCON | STACK_EV_DISPATCH | STACK_EV_KEY, RT_EVENT_FLAG_OR | RT_EVENT_FLAG_CLEAR, next_timeout, &event); if (evt_dispatch_worker() != RT_EOK) { dispatch_timeout = (rt_tick_t)RT_WAITING_FOREVER; } if (event & STACK_EV_DISCON) { if (BLE_CONN_HANDLE_INVALID != m_conn_handle) { sd_ble_gap_disconnect(m_conn_handle, BLE_HCI_REMOTE_USER_TERMINATED_CONNECTION); } } if (event & STACK_EV_KEY) { if (stack_state != STACK_STATE_CON && stack_state != STACK_STATE_ADV) { FAST_ADV(); } } next_timeout = (rt_tick_t)RT_WAITING_FOREVER; if (dispatch_timeout < next_timeout) { next_timeout = dispatch_timeout; } } } static void _softdevice_thread(void* parameter) { for (;;) { rt_sem_take(sd_evt_sem, RT_WAITING_FOREVER); intern_softdevice_events_execute(); } } rt_err_t ble_init(void) { rt_thread_t thread; _stack_init(); thread = rt_thread_create("sdth", _softdevice_thread, RT_NULL, 512, 0, 10); if (thread != RT_NULL) { rt_thread_startup(thread); } else { return RT_ERROR; } thread = rt_thread_create("bleth", _stack_thread, RT_NULL, 2048, 1, 10); if (thread != RT_NULL) { return rt_thread_startup(thread); } return RT_ERROR; }