/* * @brief SSP Registers and control functions * * @note * Copyright(C) NXP Semiconductors, 2012 * All rights reserved. * * @par * Software that is described herein is for illustrative purposes only * which provides customers with programming information regarding the * LPC products. This software is supplied "AS IS" without any warranties of * any kind, and NXP Semiconductors and its licensor disclaim any and * all warranties, express or implied, including all implied warranties of * merchantability, fitness for a particular purpose and non-infringement of * intellectual property rights. NXP Semiconductors assumes no responsibility * or liability for the use of the software, conveys no license or rights under any * patent, copyright, mask work right, or any other intellectual property rights in * or to any products. NXP Semiconductors reserves the right to make changes * in the software without notification. NXP Semiconductors also makes no * representation or warranty that such application will be suitable for the * specified use without further testing or modification. * * @par * Permission to use, copy, modify, and distribute this software and its * documentation is hereby granted, under NXP Semiconductors' and its * licensor's relevant copyrights in the software, without fee, provided that it * is used in conjunction with NXP Semiconductors microcontrollers. This * copyright, permission, and disclaimer notice must appear in all copies of * this code. */ #ifndef __SSP_001_H_ #define __SSP_001_H_ #include "sys_config.h" #include "cmsis.h" #ifdef __cplusplus extern "C" { #endif /** @defgroup IP_SSP_001 IP: SSP register block and driver * @ingroup IP_Drivers * @{ */ /** * @brief SSP register block structure */ typedef struct { /*!< SSPn Structure */ __IO uint32_t CR0; /*!< Control Register 0. Selects the serial clock rate, bus type, and data size. */ __IO uint32_t CR1; /*!< Control Register 1. Selects master/slave and other modes. */ __IO uint32_t DR; /*!< Data Register. Writes fill the transmit FIFO, and reads empty the receive FIFO. */ __I uint32_t SR; /*!< Status Register */ __IO uint32_t CPSR; /*!< Clock Prescale Register */ __IO uint32_t IMSC; /*!< Interrupt Mask Set and Clear Register */ __I uint32_t RIS; /*!< Raw Interrupt Status Register */ __I uint32_t MIS; /*!< Masked Interrupt Status Register */ __O uint32_t ICR; /*!< SSPICR Interrupt Clear Register */ #if !defined(CHIP_LPC111X_CXX) && !defined(CHIP_LPC11UXX) /* no DMA on LPC11xx or LPC11Uxx */ __IO uint32_t DMACR; /*!< SSPn DMA control register */ #endif } IP_SSP_001_Type; /** * Macro defines for CR0 register */ /** SSP data size select, must be 4 bits to 16 bits */ #define SSP_CR0_DSS(n) ((uint32_t) ((n) & 0xF)) /** SSP control 0 Motorola SPI mode */ #define SSP_CR0_FRF_SPI ((uint32_t) (0 << 4)) /** SSP control 0 TI synchronous serial mode */ #define SSP_CR0_FRF_TI ((uint32_t) (1 << 4)) /** SSP control 0 National Micro-wire mode */ #define SSP_CR0_FRF_MICROWIRE ((uint32_t) (2 << 4)) /** SPI clock polarity bit (used in SPI mode only), (1) = maintains the bus clock high between frames, (0) = low */ #define SSP_CR0_CPOL_LO ((uint32_t) (0)) #define SSP_CR0_CPOL_HI ((uint32_t) (1 << 6)) /** SPI clock out phase bit (used in SPI mode only), (1) = captures data on the second clock transition of the frame, (0) = first */ #define SSP_CR0_CPHA_FIRST ((uint32_t) (0)) #define SSP_CR0_CPHA_SECOND ((uint32_t) (1 << 7)) /** SSP serial clock rate value load macro, divider rate is PERIPH_CLK / (cpsr * (SCR + 1)) */ #define SSP_CR0_SCR(n) ((uint32_t) ((n & 0xFF) << 8)) /** SSP CR0 bit mask */ #define SSP_CR0_BITMASK ((uint32_t) (0xFFFF)) /** SSP CR0 bit mask */ #define SSP_CR0_BITMASK ((uint32_t) (0xFFFF)) /** SSP serial clock rate value load macro, divider rate is PERIPH_CLK / (cpsr * (SCR + 1)) */ #define SSP_CR0_SCR(n) ((uint32_t) ((n & 0xFF) << 8)) /** * Macro defines for CR1 register */ /** SSP control 1 loopback mode enable bit */ #define SSP_CR1_LBM_EN ((uint32_t) (1 << 0)) /** SSP control 1 enable bit */ #define SSP_CR1_SSP_EN ((uint32_t) (1 << 1)) /** SSP control 1 slave enable */ #define SSP_CR1_SLAVE_EN ((uint32_t) (1 << 2)) #define SSP_CR1_MASTER_EN ((uint32_t) (0)) /** SSP control 1 slave out disable bit, disables transmit line in slave mode */ #define SSP_CR1_SO_DISABLE ((uint32_t) (1 << 3)) /** SSP CR1 bit mask */ #define SSP_CR1_BITMASK ((uint32_t) (0x0F)) /** SSP CPSR bit mask */ #define SSP_CPSR_BITMASK ((uint32_t) (0xFF)) /** * Macro defines for DR register */ /** SSP data bit mask */ #define SSP_DR_BITMASK(n) ((n) & 0xFFFF) /** * Macro defines for SR register */ /** SSP SR bit mask */ #define SSP_SR_BITMASK ((uint32_t) (0x1F)) /** ICR bit mask */ #define SSP_ICR_BITMASK ((uint32_t) (0x03)) /** * @brief SSP Type of Status */ typedef enum { SSP_STAT_TFE = ((uint32_t)(1 << 0)),/**< TX FIFO Empty */ SSP_STAT_TNF = ((uint32_t)(1 << 1)),/**< TX FIFO not full */ SSP_STAT_RNE = ((uint32_t)(1 << 2)),/**< RX FIFO not empty */ SSP_STAT_RFF = ((uint32_t)(1 << 3)),/**< RX FIFO full */ SSP_STAT_BSY = ((uint32_t)(1 << 4)),/**< SSP Busy */ } SSP_Status_Type; /** * @brief SSP Type of Interrupt Mask */ typedef enum { SSP_RORIM = ((uint32_t)(1 << 0)), /**< Overun */ SSP_RTIM = ((uint32_t)(1 << 1)),/**< TimeOut */ SSP_RXIM = ((uint32_t)(1 << 2)),/**< Rx FIFO is at least half full */ SSP_TXIM = ((uint32_t)(1 << 3)),/**< Tx FIFO is at least half empty */ SSP_INT_MASK_BITMASK = ((uint32_t)(0xF)), } SSP_Int_Mask_Type; /** * @brief SSP Type of Mask Interrupt Status */ typedef enum { SSP_RORMIS = ((uint32_t)(1 << 0)), /**< Overun */ SSP_RTMIS = ((uint32_t)(1 << 1)), /**< TimeOut */ SSP_RXMIS = ((uint32_t)(1 << 2)), /**< Rx FIFO is at least half full */ SSP_TXMIS = ((uint32_t)(1 << 3)), /**< Tx FIFO is at least half empty */ SSP_MASK_INT_STAT_BITMASK = ((uint32_t)(0xF)), } SSP_Mask_Int_Status_Type; /** * @brief SSP Type of Raw Interrupt Status */ typedef enum { SSP_RORRIS = ((uint32_t)(1 << 0)), /**< Overun */ SSP_RTRIS = ((uint32_t)(1 << 1)), /**< TimeOut */ SSP_RXRIS = ((uint32_t)(1 << 2)), /**< Rx FIFO is at least half full */ SSP_TXRIS = ((uint32_t)(1 << 3)), /**< Tx FIFO is at least half empty */ SSP_RAW_INT_STAT_BITMASK = ((uint32_t)(0xF)), } SSP_Raw_Int_Status_Type; typedef enum { SSP_RORIC = 0x0, SSP_RTIC = 0x1, SSP_INT_CLEAR_BITMASK = 0x3, } SSP_Int_Clear_Type; typedef enum SSP_DMA_Type { SSP_DMA_RX = (1u), /**< DMA RX Enable */ SSP_DMA_TX = (1u << 1), /**< DMA TX Enable */ } SSP_DMA_Type; /** * @brief Disable SSP operation * @param pSSP : The base of SSP peripheral on the chip * @return Nothing * The SSP controller is disabled */ void IP_SSP_DeInit(IP_SSP_001_Type *pSSP); /** * @brief Enable/Disable SSP operation * @param pSSP : The base of SSP peripheral on the chip * @param NewState : New state, ENABLE or DISABLE * @return Nothing */ void IP_SSP_Cmd(IP_SSP_001_Type *pSSP, FunctionalState NewState); /** * @brief Enable/Disable loopback mode * @param pSSP : The base of SSP peripheral on the chip * @param NewState : New state, ENABLE or DISABLE * @return Nothing * Serial input is taken from the serial output (MOSI or MISO) rather * than the serial input pin */ void IP_SSP_LoopBackCmd(IP_SSP_001_Type *pSSP, FunctionalState NewState); /** * @brief Get the current status of SSP controller * @param pSSP : The base of SSP peripheral on the chip * @param Stat : Type of status, should be : * - SSP_STAT_TFE * - SSP_STAT_TNF * - SSP_STAT_RNE * - SSP_STAT_RFF * - SSP_STAT_BSY * @return SSP controller status, SET or RESET */ FlagStatus IP_SSP_GetStatus(IP_SSP_001_Type *pSSP, SSP_Status_Type Stat); /** * @brief Get the masked interrupt status * @param pSSP : The base of SSP peripheral on the chip * @return SSP Masked Interrupt Status Register value * The return value contains a 1 for each interrupt condition that is asserted and enabled (masked) */ uint32_t IP_SSP_GetIntStatus(IP_SSP_001_Type *pSSP); /** * @brief Get the raw interrupt status * @param pSSP : The base of SSP peripheral on the chip * @param RawInt : Interrupt condition to be get status, shoud be : * - SSP_RORRIS * - SSP_RTRIS * - SSP_RXRIS * - SSP_TXRIS * @return Raw interrupt status corresponding to interrupt condition , SET or RESET * Get the status of each interrupt condition ,regardless of whether or not the interrupt is enabled */ IntStatus IP_SSP_GetRawIntStatus(IP_SSP_001_Type *pSSP, SSP_Raw_Int_Status_Type RawInt); /** * @brief Get the number of bits transferred in each frame * @param pSSP : The base of SSP peripheral on the chip * @return the number of bits transferred in each frame minus one * The return value is 0x03 -> 0xF corresponding to 4bit -> 16bit transfer */ uint8_t IP_SSP_GetDataSize(IP_SSP_001_Type *pSSP); /** * @brief Clear the corresponding interrupt condition(s) in the SSP controller * @param pSSP : The base of SSP peripheral on the chip * @param IntClear: Type of cleared interrupt, should be : * - SSP_RORIC * - SSP_RTIC * @return Nothing * Software can clear one or more interrupt condition(s) in the SSP controller */ void IP_SSP_ClearIntPending(IP_SSP_001_Type *pSSP, SSP_Int_Clear_Type IntClear); /** * @brief Enable/Disable interrupt for the SSP * @param pSSP : The base of SSP peripheral on the chip * @param IntType : Type of interrupt condition to be enable/disable, should be : * - SSP_RORIM * - SSP_RTIM * - SSP_RXIM * - SSP_TXIM * @param NewState : New state, ENABLE or DISABLE * @return Nothing */ void IP_SSP_Int_Enable(IP_SSP_001_Type *pSSP, SSP_Int_Mask_Type IntType, FunctionalState NewState); /** * @brief Get received SSP data * @param pSSP : The base of SSP peripheral on the chip * @return SSP 16-bit data received */ uint16_t IP_SSP_ReceiveFrame(IP_SSP_001_Type *pSSP); /** * @brief Send SSP 16-bit data * @param pSSP : The base of SSP peripheral on the chip * @param tx_data : SSP 16-bit data to be transmited * @return Nothing */ void IP_SSP_SendFrame(IP_SSP_001_Type *pSSP, uint16_t tx_data); /** * @brief Set up output clocks per bit for SSP bus * @param pSSP : The base of SSP peripheral on the chip * @param clk_rate fs: The number of prescaler-output clocks per bit on the bus, minus one * @param prescale : The factor by which the Prescaler divides the SSP peripheral clock PCLK * @return Nothing * The bit frequency is PCLK / (prescale x[clk_rate+1]) */ void IP_SSP_Set_ClockRate(IP_SSP_001_Type *pSSP, uint32_t clk_rate, uint32_t prescale); /** * @brief Set up the SSP frame format * @param pSSP : The base of SSP peripheral on the chip * @param bits : The number of bits transferred in each frame, should be SSP_BITS_4 to SSP_BITS_16 * @param frameFormat : Frame format, should be : * - SSP_FRAMEFORMAT_SPI * - SSP_FRAMEFORMAT_TI * - SSP_FRAMEFORMAT_MICROWIRE * @param clockFormat : Select Clock polarity and Clock phase, should be : * - SSP_CLOCK_CPHA0_CPOL0 * - SSP_CLOCK_CPHA0_CPOL1 * - SSP_CLOCK_CPHA1_CPOL0 * - SSP_CLOCK_CPHA1_CPOL1 * @return Nothing * Note: The clockFormat is only used in SPI mode */ void IP_SSP_Set_Format(IP_SSP_001_Type *pSSP, uint32_t bits, uint32_t frameFormat, uint32_t clockFormat); /** * @brief Set the SSP working as master or slave mode * @param pSSP : The base of SSP peripheral on the chip * @param mode : Operating mode, should be * - SSP_MODE_MASTER * - SSP_MODE_SLAVE * @return Nothing */ void IP_SSP_Set_Mode(IP_SSP_001_Type *pSSP, uint32_t mode); /** * @brief Enable/Disable DMA for SSP * @param pSSP : The base of SSP peripheral on the chip * @param ssp_dma_t : DMA set up for transmit/receive SSP, should be * - SSP_DMA_RX * - SSP_DMA_TX * @param NewState : New state, ENABLE or DISABLE * @return Nothing */ void IP_SSP_DMA_Cmd(IP_SSP_001_Type *pSSP, SSP_DMA_Type ssp_dma_t, FunctionalState NewState); /** * @} */ #ifdef __cplusplus } #endif #endif /* __SSP_001_H_ */