/***************************************************************************** * Copyright (c) 2019, Nations Technologies Inc. * * All rights reserved. * **************************************************************************** * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * - Redistributions of source code must retain the above copyright notice, * this list of conditions and the disclaimer below. * * Nations' name may not be used to endorse or promote products derived from * this software without specific prior written permission. * * DISCLAIMER: THIS SOFTWARE IS PROVIDED BY NATIONS "AS IS" AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE * DISCLAIMED. IN NO EVENT SHALL NATIONS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, * OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************/ /** * @file drv_spi.c * @author Nations * @version v1.0.0 * * @copyright Copyright (c) 2019, Nations Technologies Inc. All rights reserved. */ #include "drv_spi.h" #if defined(RT_USING_SPI) && defined(RT_USING_PIN) #include #if defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || \ defined(BSP_USING_SPI3) /* #define DEBUG */ #ifdef DEBUG #define DEBUG_PRINTF(...) rt_kprintf(__VA_ARGS__) #else #define DEBUG_PRINTF(...) #endif /* private rt-thread spi ops function */ static rt_err_t configure(struct rt_spi_device* device, struct rt_spi_configuration* configuration) { SPI_InitType SPI_InitStructure; RCC_ClocksType RCC_ClockFreq; SPI_Module* spi_periph; RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); RCC_GetClocksFreqValue(&RCC_ClockFreq); spi_periph = (SPI_Module*)device->bus->parent.user_data; if(spi_periph != SPI1 && spi_periph != SPI2 && spi_periph != SPI3) { return RT_EIO; } if(configuration->data_width <= 8) { SPI_InitStructure.DataLen = SPI_DATA_SIZE_8BITS; } else if(configuration->data_width <= 16) { SPI_InitStructure.DataLen = SPI_DATA_SIZE_16BITS; } else { return RT_EIO; } { rt_uint32_t spi_apb_clock; rt_uint32_t max_hz; max_hz = configuration->max_hz; DEBUG_PRINTF("sys freq: %d\n", RCC_ClockFreq.SysclkFreq); DEBUG_PRINTF("CK_APB2 freq: %d\n", RCC_ClockFreq.Pclk2Freq); DEBUG_PRINTF("max freq: %d\n", max_hz); if (spi_periph == SPI1) { spi_apb_clock = RCC_ClockFreq.Pclk2Freq; } else { spi_apb_clock = RCC_ClockFreq.Pclk1Freq; } if(max_hz >= spi_apb_clock/2) { SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_2; } else if (max_hz >= spi_apb_clock/4) { SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_4; } else if (max_hz >= spi_apb_clock/8) { SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_8; } else if (max_hz >= spi_apb_clock/16) { SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_16; } else if (max_hz >= spi_apb_clock/32) { SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_32; } else if (max_hz >= spi_apb_clock/64) { SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_64; } else if (max_hz >= spi_apb_clock/128) { SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_128; } else { /* min prescaler 256 */ SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_256; } } /* baudrate */ switch(configuration->mode & RT_SPI_MODE_3) { case RT_SPI_MODE_0: SPI_InitStructure.CLKPOL = SPI_CLKPOL_LOW; SPI_InitStructure.CLKPHA = SPI_CLKPHA_FIRST_EDGE; break; case RT_SPI_MODE_1: SPI_InitStructure.CLKPOL = SPI_CLKPOL_LOW; SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE; break; case RT_SPI_MODE_2: SPI_InitStructure.CLKPOL = SPI_CLKPOL_HIGH; SPI_InitStructure.CLKPHA = SPI_CLKPHA_FIRST_EDGE; break; case RT_SPI_MODE_3: SPI_InitStructure.CLKPOL = SPI_CLKPOL_HIGH; SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE; break; } /* MSB or LSB */ if(configuration->mode & RT_SPI_MSB) { SPI_InitStructure.FirstBit = SPI_FB_MSB; } else { SPI_InitStructure.FirstBit = SPI_FB_LSB; } /*!< SPI configuration */ SPI_InitStructure.DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX; SPI_InitStructure.SpiMode = SPI_MODE_MASTER; SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE; SPI_InitStructure.NSS = SPI_NSS_SOFT; SPI_InitStructure.CRCPoly = 7; SPI_Init(spi_periph, &SPI_InitStructure); /*!< Enable the sFLASH_SPI */ SPI_Enable(spi_periph, ENABLE); return RT_EOK; } static rt_uint32_t xfer(struct rt_spi_device* device, struct rt_spi_message* message) { struct n32_spi_cs *cs_pin = device->parent.user_data; SPI_Module* spi_periph = (SPI_Module*)device->bus->parent.user_data; struct rt_spi_configuration * config = &device->config; RT_ASSERT(device != NULL); RT_ASSERT(message != NULL); /* take CS */ if(message->cs_take) { rt_pin_write(cs_pin->GPIO_Pin, PIN_LOW); DEBUG_PRINTF("spi take cs\n"); } { if(config->data_width <= 8) { const rt_uint8_t * send_ptr = message->send_buf; rt_uint8_t * recv_ptr = message->recv_buf; rt_uint32_t size = message->length; DEBUG_PRINTF("spi poll transfer start: %d\n", size); while(size--) { rt_uint8_t data = 0xA5; if(send_ptr != RT_NULL) { data = *send_ptr++; } /*!< Loop while DAT register in not emplty */ while (SPI_I2S_GetStatus(spi_periph, SPI_I2S_TE_FLAG) == RESET); // Send the byte SPI_I2S_TransmitData(spi_periph, data); //Wait until a data is received while(SPI_I2S_GetStatus(spi_periph, SPI_I2S_RNE_FLAG) == RESET); // Get the received data data = SPI_I2S_ReceiveData(spi_periph); if(recv_ptr != RT_NULL) { *recv_ptr++ = data; } } DEBUG_PRINTF("spi poll transfer finsh\n"); } else if(config->data_width <= 16) { const rt_uint16_t * send_ptr = message->send_buf; rt_uint16_t * recv_ptr = message->recv_buf; rt_uint32_t size = message->length; while(size--) { rt_uint16_t data = 0xFF; if(send_ptr != RT_NULL) { data = *send_ptr++; } /*!< Loop while DAT register in not emplty */ while (SPI_I2S_GetStatus(spi_periph, SPI_I2S_TE_FLAG) == RESET); // Send the byte SPI_I2S_TransmitData(spi_periph, data); //Wait until a data is received while(RESET == SPI_I2S_GetStatus(spi_periph, SPI_I2S_RNE_FLAG)); // Get the received data data = SPI_I2S_ReceiveData(spi_periph); if(recv_ptr != RT_NULL) { *recv_ptr++ = data; } } } } /* release CS */ if(message->cs_release) { rt_pin_write(cs_pin->GPIO_Pin, PIN_HIGH); DEBUG_PRINTF("spi release cs\n"); } return message->length; } static struct rt_spi_ops spi_ops = { configure, xfer }; int rt_hw_spi_init(void) { int result = 0; #ifdef BSP_USING_SPI1 static struct rt_spi_bus spi_bus1; spi_bus1.parent.user_data = (void *)SPI1; result = rt_spi_bus_register(&spi_bus1, "spi1", &spi_ops); RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_GPIOA, ENABLE); RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_SPI1, ENABLE); /* SPI1_SCK(PA5), SPI1_MISO(PA6) and SPI1_MOSI(PA7) GPIO pin configuration */ GPIOInit(SPI1_SCK_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI1_SCK_PIN); GPIOInit(SPI1_MOSI_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI1_MOSI_PIN); GPIOInit(SPI1_MISO_GPIO_PORT, GPIO_Mode_IN_FLOATING, GPIO_Speed_50MHz, SPI1_MISO_PIN); #endif #ifdef BSP_USING_SPI2 static struct rt_spi_bus spi_bus2; spi_bus2.parent.user_data = (void *)SPI2; result = rt_spi_bus_register(&spi_bus2, "spi2", &spi_ops); RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_SPI2, ENABLE); /* SPI2_SCK(PB13), SPI2_MISO(PB14) and SPI2_MOSI(PB15) GPIO pin configuration */ GPIOInit(SPI2_SCK_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI2_SCK_PIN); GPIOInit(SPI2_MOSI_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI2_MOSI_PIN); GPIOInit(SPI2_MISO_GPIO_PORT, GPIO_Mode_IN_FLOATING, GPIO_Speed_50MHz, SPI2_MISO_PIN); #endif #ifdef BSP_USING_SPI3 static struct rt_spi_bus spi_bus3; spi_bus3.parent.user_data = (void *)SPI3; result = rt_spi_bus_register(&spi_bus3, "spi3", &spi_ops); /* Enable AFIO clock */ RCC_EnableAPB2PeriphClk(RCC_APB2_PERIPH_AFIO, ENABLE); GPIO_ConfigPinRemap(GPIO_RMP_SW_JTAG_SW_ENABLE, ENABLE); RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_SPI3, ENABLE); /* SPI3_SCK(PB3), SPI3_MISO(PB4) and SPI3_MOSI(PB5) GPIO pin configuration */ GPIOInit(SPI3_SCK_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI3_SCK_PIN); GPIOInit(SPI3_MOSI_GPIO_PORT, GPIO_Mode_AF_PP, GPIO_Speed_50MHz, SPI3_MOSI_PIN); GPIOInit(SPI3_MISO_GPIO_PORT, GPIO_Mode_IN_FLOATING, GPIO_Speed_50MHz, SPI3_MISO_PIN); #endif return result; } INIT_BOARD_EXPORT(rt_hw_spi_init); #endif /* defined(BSP_USING_SPI1) || defined(BSP_USING_SPI2) || defined(BSP_USING_SPI3) */ #endif