/** @file sys_startup.c * @brief Startup Source File * @date 23.May.2013 * @version 03.05.01 * * This file contains: * - Include Files * - Type Definitions * - External Functions * - VIM RAM Setup * - Startup Routine * . * which are relevant for the Startup. */ /* (c) Texas Instruments 2009-2013, All rights reserved. */ /* USER CODE BEGIN (0) */ /* USER CODE END */ /* Include Files */ #include "sys_common.h" #include "system.h" #include "sys_vim.h" #include "sys_core.h" #include "sys_selftest.h" #include "esm.h" #include "mibspi.h" /* USER CODE BEGIN (1) */ /* USER CODE END */ /* Type Definitions */ typedef void (*handler_fptr)(const uint8 * in, uint8 * out); /* USER CODE BEGIN (2) */ /* USER CODE END */ /* External Functions */ /*SAFETYMCUSW 94 S MR:11.1 "Startup code(handler pointers)" */ /*SAFETYMCUSW 122 S MR:20.11 "Startup code(exit and abort need to be present)" */ /*SAFETYMCUSW 296 S MR:8.6 "Startup code(library functions at block scope)" */ /*SAFETYMCUSW 298 S MR: "Startup code(handler pointers)" */ /*SAFETYMCUSW 299 S MR: "Startup code(typedef for handler pointers in library )" */ /*SAFETYMCUSW 326 S MR:8.2 "Startup code(Declaration for main in library)" */ /*SAFETYMCUSW 60 D MR:8.8 "Startup code(Declaration for main in library;Only doing an extern for the same)" */ /*SAFETYMCUSW 94 S MR:11.1 "Startup code(handler pointers)" */ /*SAFETYMCUSW 354 S MR:1.4 " Startup code(Extern declaration present in the library)" */ /*SAFETYMCUSW 218 S MR:20.2 "Functions from library" */ #pragma WEAK(__TI_Handler_Table_Base) #pragma WEAK(__TI_Handler_Table_Limit) #pragma WEAK(__TI_CINIT_Base) #pragma WEAK(__TI_CINIT_Limit) extern uint32 __TI_Handler_Table_Base; extern uint32 __TI_Handler_Table_Limit; extern uint32 __TI_CINIT_Base; extern uint32 __TI_CINIT_Limit; extern uint32 __TI_PINIT_Base; extern uint32 __TI_PINIT_Limit; extern uint32 * __binit__; extern void main(void); extern void exit(void); extern void muxInit(void); /* USER CODE BEGIN (3) */ /* USER CODE END */ /* Startup Routine */ /* USER CODE BEGIN (4) */ /* USER CODE END */ #pragma CODE_STATE(_c_int00, 32) #pragma INTERRUPT(_c_int00, RESET) void _c_int00(void) { /* USER CODE BEGIN (5) */ /* USER CODE END */ /* Initialize Core Registers to avoid CCM Error */ _coreInitRegisters_(); /* USER CODE BEGIN (6) */ /* USER CODE END */ /* Initialize Stack Pointers */ _coreInitStackPointer_(); /* USER CODE BEGIN (7) */ /* USER CODE END */ /* Work Around for Errata DEVICE#140: ( Only on Rev A silicon) * * Errata Description: * The Core Compare Module(CCM-R4) may cause nERROR to be asserted after a cold power-on * Workaround: * Clear ESM Group2 Channel 2 error in ESMSR2 and Compare error in CCMSR register */ if (DEVICE_ID_REV == 0x802AAD05U) { _esmCcmErrorsClear_(); } /* USER CODE BEGIN (8) */ /* USER CODE END */ /* Enable CPU Event Export */ /* This allows the CPU to signal any single-bit or double-bit errors detected * by its ECC logic for accesses to program flash or data RAM. */ _coreEnableEventBusExport_(); /* USER CODE BEGIN (11) */ /* USER CODE END */ /* Reset handler: the following instructions read from the system exception status register * to identify the cause of the CPU reset. */ /* check for power-on reset condition */ if ((SYS_EXCEPTION & POWERON_RESET) != 0U) { /* USER CODE BEGIN (12) */ /* USER CODE END */ /* clear all reset status flags */ SYS_EXCEPTION = 0xFFFFU; /* USER CODE BEGIN (13) */ /* USER CODE END */ _errata_CORTEXR4_66_(); /* USER CODE BEGIN (14) */ /* USER CODE END */ _errata_CORTEXR4_57_(); /* USER CODE BEGIN (15) */ /* USER CODE END */ /* continue with normal start-up sequence */ } else if ((SYS_EXCEPTION & OSC_FAILURE_RESET) != 0U) { /* Reset caused due to oscillator failure. Add user code here to handle oscillator failure */ /* USER CODE BEGIN (16) */ /* USER CODE END */ } else if ((SYS_EXCEPTION & WATCHDOG_RESET) !=0U) { /* Reset caused due * 1) windowed watchdog violation - Add user code here to handle watchdog violation. * 2) ICEPICK Reset - After loading code via CCS / System Reset through CCS */ /* Check the WatchDog Status register */ if(WATCHDOG_STATUS != 0U) { /* Add user code here to handle watchdog violation. */ /* USER CODE BEGIN (17) */ /* USER CODE END */ /* Clear the Watchdog reset flag in Exception Status register */ SYS_EXCEPTION = WATCHDOG_RESET; /* USER CODE BEGIN (18) */ /* USER CODE END */ } else { /* Clear the ICEPICK reset flag in Exception Status register */ SYS_EXCEPTION = ICEPICK_RESET; /* USER CODE BEGIN (19) */ /* USER CODE END */ } } else if ((SYS_EXCEPTION & CPU_RESET) !=0U) { /* Reset caused due to CPU reset. CPU reset can be caused by CPU self-test completion, or by toggling the "CPU RESET" bit of the CPU Reset Control Register. */ /* USER CODE BEGIN (20) */ /* USER CODE END */ /* clear all reset status flags */ SYS_EXCEPTION = CPU_RESET; /* USER CODE BEGIN (21) */ /* USER CODE END */ } else if ((SYS_EXCEPTION & SW_RESET) != 0U) { /* Reset caused due to software reset. Add user code to handle software reset. */ /* USER CODE BEGIN (22) */ /* USER CODE END */ } else { /* Reset caused by nRST being driven low externally. Add user code to handle external reset. */ /* USER CODE BEGIN (23) */ /* USER CODE END */ } /* Check if there were ESM group3 errors during power-up. * These could occur during eFuse auto-load or during reads from flash OTP * during power-up. Device operation is not reliable and not recommended * in this case. * An ESM group3 error only drives the nERROR pin low. An external circuit * that monitors the nERROR pin must take the appropriate action to ensure that * the system is placed in a safe state, as determined by the application. */ if ((esmREG->ESTATUS1[2]) != 0U) { /* for(;;) can be removed by adding "# if 0" and "# endif" in the user codes above and below */ /* USER CODE BEGIN (24) */ /* USER CODE END */ for(;;) { }/* Wait */ /* USER CODE BEGIN (25) */ /* USER CODE END */ } /* USER CODE BEGIN (26) */ /* USER CODE END */ /* Initialize System - Clock, Flash settings with Efuse self check */ systemInit(); /* USER CODE BEGIN (29) */ /* USER CODE END */ /* Run a diagnostic check on the memory self-test controller. * This function chooses a RAM test algorithm and runs it on an on-chip ROM. * The memory self-test is expected to fail. The function ensures that the PBIST controller * is capable of detecting and indicating a memory self-test failure. */ pbistSelfCheck(); /* USER CODE BEGIN (31) */ /* USER CODE END */ /* Run PBIST on CPU RAM. * The PBIST controller needs to be configured separately for single-port and dual-port SRAMs. * The CPU RAM is a single-port memory. The actual "RAM Group" for all on-chip SRAMs is defined in the * device datasheet. */ pbistRun(0x08300020U, /* ESRAM Single Port PBIST */ (uint32)PBIST_March13N_SP); /* USER CODE BEGIN (32) */ /* USER CODE END */ /* Wait for PBIST for CPU RAM to be completed */ while((!pbistIsTestCompleted()) == TRUE) { }/* Wait */ /* USER CODE BEGIN (33) */ /* USER CODE END */ /* Check if CPU RAM passed the self-test */ if( pbistIsTestPassed() != TRUE) { /* CPU RAM failed the self-test. * Need custom handler to check the memory failure * and to take the appropriate next step. */ if(pbistPortTestStatus((uint32)PBIST_PORT0) != TRUE) { memoryPort0TestFailNotification((uint32)((pbistREG->RAMT & 0xFF000000U) >> 24U), (uint32)((pbistREG->RAMT & 0x00FF0000U) >> 16U), (uint32)pbistREG->FSRA0, (uint32)pbistREG->FSRDL0); } else if(pbistPortTestStatus((uint32)PBIST_PORT1) != TRUE) { memoryPort1TestFailNotification((uint32)((pbistREG->RAMT & 0xFF000000U) >> 24U), (uint32)((pbistREG->RAMT & 0x00FF0000U) >> 16U),(uint32)pbistREG->FSRA1, (uint32)pbistREG->FSRDL1); } else { /* for(;;) can be removed by adding "# if 0" and "# endif" in the user codes above and below */ /* USER CODE BEGIN (34) */ /* USER CODE END */ for(;;) { }/* Wait */ /* USER CODE BEGIN (35) */ /* USER CODE END */ } } /* USER CODE BEGIN (36) */ /* USER CODE END */ /* Disable PBIST clocks and disable memory self-test mode */ pbistStop(); /* USER CODE BEGIN (37) */ /* USER CODE END */ /* Initialize CPU RAM. * This function uses the system module's hardware for auto-initialization of memories and their * associated protection schemes. The CPU RAM is initialized by setting bit 0 of the MSIENA register. * Hence the value 0x1 passed to the function. * This function will initialize the entire CPU RAM and the corresponding ECC locations. */ memoryInit(0x1U); /* USER CODE BEGIN (38) */ /* USER CODE END */ /* Enable ECC checking for TCRAM accesses. * This function enables the CPU's ECC logic for accesses to B0TCM and B1TCM. */ _coreEnableRamEcc_(); /* USER CODE BEGIN (39) */ /* USER CODE END */ /* Start PBIST on all dual-port memories */ /* NOTE : Please Refer DEVICE DATASHEET for the list of Supported Dual port Memories. PBIST test perfomed only on the user selected memories in HALCoGen's GUI SAFETY INIT tab. */ pbistRun( 0x00000000U | 0x00000000U | 0x00000800U | 0x00000200U | 0x00000040U | 0x00000080U | 0x00000100U | 0x00000004U | 0x00000008U | 0x00000010U | 0x00000400U | 0x00020000U | 0x00001000U | 0x00040000U | 0x00002000U | 0x00080000U | 0x00004000U | 0x00000000U | 0x00000000U ,(uint32) PBIST_March13N_DP); /* USER CODE BEGIN (40) */ /* USER CODE END */ /* Test the CPU ECC mechanism for RAM accesses. * The checkBxRAMECC functions cause deliberate single-bit and double-bit errors in TCRAM accesses * by corrupting 1 or 2 bits in the ECC. Reading from the TCRAM location with a 2-bit error * in the ECC causes a data abort exception. The data abort handler is written to look for * deliberately caused exception and to return the code execution to the instruction * following the one that caused the abort. */ checkB0RAMECC(); tcram1REG->RAMCTRL &= ~(0x00000100U); /* disable writes to ECC RAM */ tcram2REG->RAMCTRL &= ~(0x00000100U); checkB1RAMECC(); tcram1REG->RAMCTRL &= ~(0x00000100U); /* disable writes to ECC RAM */ tcram2REG->RAMCTRL &= ~(0x00000100U); /* USER CODE BEGIN (41) */ /* USER CODE END */ /* USER CODE BEGIN (43) */ /* USER CODE END */ /* Wait for PBIST for CPU RAM to be completed */ while((!pbistIsTestCompleted()) == TRUE) { }/* Wait */ /* USER CODE BEGIN (44) */ /* USER CODE END */ /* Check if CPU RAM passed the self-test */ if( pbistIsTestPassed() != TRUE) { /* USER CODE BEGIN (45) */ /* USER CODE END */ /* CPU RAM failed the self-test. * Need custom handler to check the memory failure * and to take the appropriate next step. */ if(pbistPortTestStatus((uint32)PBIST_PORT0) != TRUE) { memoryPort0TestFailNotification((uint32)((pbistREG->RAMT & 0xFF000000U) >> 24U), (uint32)((pbistREG->RAMT & 0x00FF0000U) >> 16U),(uint32)pbistREG->FSRA0, (uint32)pbistREG->FSRDL0); } else if(pbistPortTestStatus((uint32)PBIST_PORT1) != TRUE) { memoryPort1TestFailNotification((uint32)((pbistREG->RAMT & 0xFF000000U) >> 24U), (uint32)((pbistREG->RAMT & 0x00FF0000U) >> 16U), (uint32)pbistREG->FSRA1, (uint32)pbistREG->FSRDL1); } else { /* for(;;) can be removed by adding "# if 0" and "# endif" in the user codes above and below */ /* USER CODE BEGIN (46) */ /* USER CODE END */ for(;;) { }/* Wait */ /* USER CODE BEGIN (47) */ /* USER CODE END */ } } /* USER CODE BEGIN (48) */ /* USER CODE END */ /* Disable PBIST clocks and disable memory self-test mode */ pbistStop(); /* USER CODE BEGIN (56) */ /* USER CODE END */ /* Release the MibSPI1 modules from local reset. * This will cause the MibSPI1 RAMs to get initialized along with the parity memory. */ mibspiREG1->GCR0 = 0x1U; /* Release the MibSPI3 modules from local reset. * This will cause the MibSPI3 RAMs to get initialized along with the parity memory. */ mibspiREG3->GCR0 = 0x1U; /* Release the MibSPI5 modules from local reset. * This will cause the MibSPI5 RAMs to get initialized along with the parity memory. */ mibspiREG5->GCR0 = 0x1U; /* USER CODE BEGIN (57) */ /* USER CODE END */ /* Initialize all on-chip SRAMs except for MibSPIx RAMs * The MibSPIx modules have their own auto-initialization mechanism which is triggered * as soon as the modules are brought out of local reset. */ /* The system module auto-init will hang on the MibSPI RAM if the module is still in local reset. */ /* NOTE : Please Refer DEVICE DATASHEET for the list of Supported Memories and their channel numbers. Memory Initialization is perfomed only on the user selected memories in HALCoGen's GUI SAFETY INIT tab. */ memoryInit( (1U << 1U) | (1U << 2U) | (1U << 5U) | (1U << 6U) | (1U << 10U) | (1U << 8U) | (1U << 14U) | (1U << 3U) | (1U << 4U) | (1U << 15U) | (1U << 16U) | (0U << 13U) ); /* Test the parity protection mechanism for peripheral RAMs NOTE : Please Refer DEVICE DATASHEET for the list of Supported Memories with parity. Parity Self check is perfomed only on the user selected memories in HALCoGen's GUI SAFETY INIT tab. */ /* USER CODE BEGIN (58) */ /* USER CODE END */ het1ParityCheck(); /* USER CODE BEGIN (59) */ /* USER CODE END */ htu1ParityCheck(); /* USER CODE BEGIN (60) */ /* USER CODE END */ het2ParityCheck(); /* USER CODE BEGIN (61) */ /* USER CODE END */ htu2ParityCheck(); /* USER CODE BEGIN (62) */ /* USER CODE END */ adc1ParityCheck(); /* USER CODE BEGIN (63) */ /* USER CODE END */ adc2ParityCheck(); /* USER CODE BEGIN (64) */ /* USER CODE END */ can1ParityCheck(); /* USER CODE BEGIN (65) */ /* USER CODE END */ can2ParityCheck(); /* USER CODE BEGIN (66) */ /* USER CODE END */ can3ParityCheck(); /* USER CODE BEGIN (67) */ /* USER CODE END */ vimParityCheck(); /* USER CODE BEGIN (68) */ /* USER CODE END */ dmaParityCheck(); /* USER CODE BEGIN (69) */ /* USER CODE END */ while ((mibspiREG1->FLG & 0x01000000U) == 0x01000000U) { }/* Wait */ /* wait for MibSPI1 RAM to complete initialization */ while ((mibspiREG3->FLG & 0x01000000U) == 0x01000000U) { }/* Wait */ /* wait for MibSPI3 RAM to complete initialization */ while ((mibspiREG5->FLG & 0x01000000U) == 0x01000000U) { }/* Wait */ /* wait for MibSPI5 RAM to complete initialization */ /* USER CODE BEGIN (70) */ /* USER CODE END */ mibspi1ParityCheck(); /* USER CODE BEGIN (71) */ /* USER CODE END */ mibspi3ParityCheck(); /* USER CODE BEGIN (72) */ /* USER CODE END */ mibspi5ParityCheck(); /* USER CODE BEGIN (73) */ /* USER CODE END */ /* USER CODE BEGIN (74) */ /* USER CODE END */ /* Initialize VIM table */ vimInit(); /* USER CODE BEGIN (75) */ /* USER CODE END */ /* Configure system response to error conditions signaled to the ESM group1 */ /* This function can be configured from the ESM tab of HALCoGen */ esmInit(); /* initialize copy table */ if ((uint32 *)&__binit__ != (uint32 *)0xFFFFFFFFU) { extern void copy_in(void * binit); copy_in((void *)&__binit__); } /* initialize the C global variables */ if (&__TI_Handler_Table_Base < &__TI_Handler_Table_Limit) { uint8 **tablePtr = (uint8 **)&__TI_CINIT_Base; uint8 **tableLimit = (uint8 **)&__TI_CINIT_Limit; while (tablePtr < tableLimit) { uint8 * loadAdr = *tablePtr++; uint8 * runAdr = *tablePtr++; uint8 idx = *loadAdr++; handler_fptr handler = (handler_fptr)(&__TI_Handler_Table_Base)[idx]; (*handler)((const uint8 *)loadAdr, runAdr); } } /* initialize constructors */ if (__TI_PINIT_Base < __TI_PINIT_Limit) { void (**p0)(void) = (void *)__TI_PINIT_Base; while ((uint32)p0 < __TI_PINIT_Limit) { void (*p)(void) = *p0++; p(); } } /* USER CODE BEGIN (76) */ /* USER CODE END */ /* call the application */ main(); /* USER CODE BEGIN (77) */ /* USER CODE END */ exit(); /* USER CODE BEGIN (78) */ /* USER CODE END */ } /* USER CODE BEGIN (79) */ /* USER CODE END */