/* * Copyright (c) 2020-2022, Bluetrum Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2020-11-20 greedyhao first version * 2022-06-08 THEWON first version for serialX */ #include "board.h" #include #ifdef RT_USING_SERIAL //#define DRV_DEBUG #define LOG_TAG "drv.usart" #include enum { #ifdef BSP_USING_UART0 UART0_INDEX, #endif #ifdef BSP_USING_UART1 UART1_INDEX, #endif #ifdef BSP_USING_UART2 UART2_INDEX, #endif }; static struct ab32_uart_config uart_config[] = { #ifdef BSP_USING_UART0 { .name = "uart0", .instance = UART0_BASE, .mode = UART_MODE_TX_RX | UART_MODE_1LINE, }, #endif #ifdef BSP_USING_UART1 { .name = "uart1", .instance = UART1_BASE, .mode = UART_MODE_TX_RX, }, #endif #ifdef BSP_USING_UART2 { .name = "uart2", .instance = UART2_BASE, .mode = UART_MODE_TX_RX, } #endif }; static struct ab32_uart uart_obj[sizeof(uart_config) / sizeof(uart_config[0])] = {0}; static rt_err_t ab32_init(struct rt_serial_device *serial) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); uart->handle.instance = uart->uart_config->instance; uart->handle.init.baud = serial->config->baud_rate; uart->handle.init.mode = uart->uart_config->mode; switch (serial->config->data_bits) { case DATA_BITS_8: uart->handle.init.word_len = UART_WORDLENGTH_8B; break; case DATA_BITS_9: uart->handle.init.word_len = UART_WORDLENGTH_9B; break; default: uart->handle.init.word_len = UART_WORDLENGTH_8B; break; } switch (serial->config->stop_bits) { case STOP_BITS_1: uart->handle.init.stop_bits = UART_STOPBITS_1; break; case STOP_BITS_2: uart->handle.init.stop_bits = UART_STOPBITS_2; break; default: uart->handle.init.stop_bits = UART_STOPBITS_1; break; } hal_uart_init(&uart->handle); return RT_EOK; } static rt_err_t ab32_configure(struct rt_serial_device *serial, struct serial_configure *cfg) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); RT_ASSERT(cfg != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); uart->handle.instance = uart->uart_config->instance; uart->handle.init.baud = cfg->baud_rate; uart->handle.init.mode = uart->uart_config->mode; switch (cfg->data_bits) { case DATA_BITS_8: uart->handle.init.word_len = UART_WORDLENGTH_8B; break; case DATA_BITS_9: uart->handle.init.word_len = UART_WORDLENGTH_9B; break; default: uart->handle.init.word_len = UART_WORDLENGTH_8B; break; } switch (cfg->stop_bits) { case STOP_BITS_1: uart->handle.init.stop_bits = UART_STOPBITS_1; break; case STOP_BITS_2: uart->handle.init.stop_bits = UART_STOPBITS_2; break; default: uart->handle.init.stop_bits = UART_STOPBITS_1; break; } hal_uart_init(&uart->handle); return RT_EOK; } static rt_err_t ab32_control(struct rt_serial_device *serial, int cmd, void *arg) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); switch (cmd) { case RT_DEVICE_CTRL_OPEN: uart->intTxing = RT_FALSE; break; /* disable interrupt */ case RT_DEVICE_CTRL_CLR_INT: hal_uart_control(uart->handle.instance, UART_RXIT_ENABLE, HAL_DISABLE); break; /* enable interrupt */ case RT_DEVICE_CTRL_SET_INT: hal_uart_clrflag(uart->handle.instance, UART_FLAG_RXPND); hal_uart_control(uart->handle.instance, UART_RXIT_ENABLE, HAL_ENABLE); break; case RT_DEVICE_CTRL_CLOSE: hal_uart_deinit(uart->handle.instance); break; } return RT_EOK; } static int ab32_putc(struct rt_serial_device *serial, char ch) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); hal_uart_write(uart->handle.instance, ch); return 1; } static int ab32_getc(struct rt_serial_device *serial) { int ch; struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); ch = -1; if (hal_uart_getflag(UART0_BASE, UART_FLAG_RXPND)) { ch = hal_uart_read(uart->handle.instance); hal_uart_clrflag(UART0_BASE, UART_FLAG_RXPND); } return ch; } static int ab32_flush(struct rt_serial_device *serial) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); while(hal_uart_getflag(uart->handle.instance, UART_FLAG_TXPND) == 0); } rt_bool_t ab32_int_txing(struct rt_serial_device *serial) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); return uart->intTxing; } static void ab32_start_tx(struct rt_serial_device *serial, rt_uint8_t ch) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); uart->intTxing = RT_TRUE; hal_uart_control(uart->handle.instance, UART_TXIT_ENABLE, HAL_ENABLE); hal_uart_write(uart->handle.instance, ch); } static void ab32_stop_tx(struct rt_serial_device *serial) { struct ab32_uart *uart; RT_ASSERT(serial != RT_NULL); uart = rt_container_of(serial, struct ab32_uart, serial); hal_uart_control(uart->handle.instance, UART_TXIT_ENABLE, HAL_DISABLE); uart->intTxing = RT_FALSE; } RT_SECTION(".irq.usart") static void uart_isr(int vector, void *param) { rt_interrupt_enter(); #ifdef BSP_USING_UART0 if(hal_uart_getflag(UART0_BASE, UART_FLAG_RXPND)) //RX one byte finish { rt_hw_serial_isr(&(uart_obj[UART0_INDEX].serial), RT_SERIAL_EVENT_RX_IND); hal_uart_clrflag(UART0_BASE, UART_FLAG_RXPND); } if(hal_uart_getflag(UART0_BASE, UART_FLAG_TXPND)) //TX one byte finish { rt_hw_serial_isr(&(uart_obj[UART0INDEX].serial), RT_SERIAL_EVENT_TX_DONE); hal_uart_clrflag(UART0_BASE, UART_FLAG_TXPND); } #endif #ifdef BSP_USING_UART1 if(hal_uart_getflag(UART1_BASE, UART_FLAG_RXPND)) //RX one byte finish { rt_hw_serial_isr(&(uart_obj[UART1_INDEX].serial), RT_SERIAL_EVENT_RX_IND); hal_uart_clrflag(UART1_BASE, UART_FLAG_RXPND); } if(hal_uart_getflag(UART1_BASE, UART_FLAG_TXPND)) //TX one byte finish { rt_hw_serial_isr(&(uart_obj[UART1_INDEX].serial), RT_SERIAL_EVENT_TX_DONE); hal_uart_clrflag(UART1_BASE, UART_FLAG_TXPND); } #endif #ifdef BSP_USING_UART2 if(hal_uart_getflag(UART2_BASE, UART_FLAG_RXPND)) //RX one byte finish { rt_hw_serial_isr(&(uart_obj[UART2_INDEX].serial), RT_SERIAL_EVENT_RX_IND); hal_uart_clrflag(UART2_BASE, UART_FLAG_RXPND); } if(hal_uart_getflag(UART2_BASE, UART_FLAG_TXPND)) //TX one byte finish { rt_hw_serial_isr(&(uart_obj[UART2_INDEX].serial), RT_SERIAL_EVENT_TX_DONE); hal_uart_clrflag(UART2_BASE, UART_FLAG_TXPND); } #endif rt_interrupt_leave(); } #ifdef HUART_ENABLE RT_SECTION(".irq.huart") void huart_timer_isr(void) { huart_if_rx_ovflow(); if (0 == huart_get_rxcnt()) { return; } } #else RT_SECTION(".irq.huart") void huart_timer_isr(void) { } #endif static const struct rt_uart_ops ab32_uart_ops = { .init = ab32_init, .configure = ab32_configure, .control = ab32_control, .putc = ab32_putc, .getc = ab32_getc, .flush = ab32_flush, .is_int_txing = ab32_int_txing, .start_tx = ab32_start_tx, .stop_tx = ab32_stop_tx, }; int rt_hw_usart_init(void) { rt_size_t obj_num = sizeof(uart_obj) / sizeof(struct ab32_uart); rt_err_t result = 0; rt_hw_interrupt_install(IRQ_UART0_2_VECTOR, uart_isr, RT_NULL, "ut_isr"); for (int i = 0; i < obj_num; i++) { /* init UART object */ uart_obj[i].uart_config = &uart_config[i]; uart_obj[i].serial.ops = &ab32_uart_ops; /* register UART device */ result = rt_hw_serial_register(&uart_obj[i].serial, uart_obj[i].uart_config->name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_INT_RX | RT_DEVICE_FLAG_INT_TX , RT_NULL); RT_ASSERT(result == RT_EOK); } return result; } #endif