
Understanding UFFS

Ricky Zheng
< ricky_gz_zheng@yahoo.co.nz >

Created: 13 March, 2007
Last modified: 24 Feb, 2010

mailto:ricky_gz_zheng@yahoo.co.nz

Content

● Why UFFS ?
● Design goal
● Flash: NOR vs NAND ?
● What's wrong with FAT ?
● UFFS basic idea

– Serial number
– Tree in memory
– Journalizing

● UFFS architecture
– UFFS device
– Mount point
– UFFS nodes tree

– Mounting UFFS
– Page spare/UFFS tags
– Block info cache
– UFFS page buffer
– Block recover
– Bad block management
– How ECC works ?
– Flash interface

● What's next ?
– UFFS2

Why UFFS ?

● JFFS/JFFS2
– Can't go out of Linux/MTD
– Memory monster

● YAFFS/YAFFS2 still consumes too much
RAM
– 64M FLASH, 500 files ==> 410K RAM

● No YAYAFFS exists yet

UFFS design goal

● Ultra low cost
– Low memory cost
– Fast booting

● Superb Stability
– Guaranteed integrity across unexpected power

losses
– Bad block tolerant, ECC and ware leveling

● NAND flash friendly
– Support variety NAND flash(page size 512, 1K or

2K, ...)
– Direct flash interface

Flash: NOR vs NAND

● NOR:
– Random access for read
– Big block (minimal erase unit)
– Byte programing
– Slow erasing/programing

● NAND:
– Page/spare access for read
– Small block
– Page/spare programing (with limited

splits/Restricted rewrite)
– Fast erasing/programing
– Delivered with bad blocks

NAND Flash Basic

Block

Page data
Spare

Erase: '0'->'1', Write/Program: '1'->'0'

What's wrong with FAT

● Need FTL (which may cost many RAM)
● Big FAT table,slow down the whole system
● Vulnerable when unexpectedly interrupted

while updating FAT or File info

FAT

File data

File infoChanges Changes

Changes

Write File

UFFS basic idea(1)

● Use unique parent/serial number pair to:
– Identify blocks
– Build relationships

Parent Serial

Parent Serial
Parent Serial Parent Serial

Parent Serial

Parent SerialParent Serial

Parent Serial

ROOT

Parent Serial

Parent: 16 bit
Serial: 16 bit

UFFS basic idea(2)

● Build the relationship tree in memory when
mounting UFFS:
– Erased blocks
– Bad blocks
– Hash tables (serial number as key)

● Dir table
● File table
● File data table

● Tree node size: 16 bytes
– Memory cost: 16 * total_blocks

UFFS basic idea(3)

● Journalizing
– Write to a new block/page instead of modify the

old one.
– Use circular time stamp: 00->01->11->00>...
– Check and correct conflicts while mounting

UFFS

UFFS Device

● UFFS Device & Mount Point

“/” “/data/”

extern uffs_Device uffs_rootDev;
extern uffs_Device uffs_dataDev;

static struct uffs_mountTableSt
femu_MountTbl[] = {

{&uffs_rootDev, 0, 200, "/"},
{&uffs_dataDev, 201, -1, "/data/"},
{NULL, 0, 0, NULL},

};

UFFS Device ===> Partition
UFFS Device: individual flash ops, cache/buffer, tree nodes ...

UFFS node tree

● UFFS nodes tree
UFFS device

Dir nodes

File nodes

Data nodes

Bad blocks block,next

block,next

block,parent,serial,sum,next

block,parent,serial,sum,length(32),next

block,parent,serial,length(16),next

Hash table, serial as the key

Erased blocks

sizeof(TreeNode) = 16

UFFS Mounting

● Mounting UFFS
Step 1:

– Scan page spares*, classify
DIR/FILE/DATA nodes

– Check bad block
– Check uncompleted recovering

Step 2:
– Randomize erased blocks

Step3:
– Check DATA nodes,take care

orphan nodes
Super fast !

UFFS device

Dir nodes

File nodes

Data nodes

Bad blocks

Erased blocks

* Unlike YAFFS, UFFS only need to read a few
spares from each block rather then all spares !!

UFFS tags

● Page spare/UFFS tags
struct uffs_TagStoreSt {

u32 dirty:1;
u32 valid:1;
u32 type:2;
u32 block_ts:2;
u32 data_len:12;
u32 serial:14;
u32 parent:10;
u32 page_id:6;
u32 reserved:4;
u32 tag_ecc:12;

};

sizeof(struct uffs_TagStoreSt) = 8, small enough to store on spare area

UFFS block info cache

● UFFS block info cache
struct uffs_pageSpareSt {

u8 expired:1;
u8 checkOk:1;
u8 blockStatus:1;
uffs_Tags tag;

};
struct uffs_blockInfoSt {

struct uffs_blockInfoSt *next;
struct uffs_blockInfoSt *prev;
u16 blockNum;
struct uffs_pageSpareSt *spares;
int expiredCount;
int refCount;

};

uffs_config.h:
MAX_CACHED_BLOCK_INFO(5 ~10)

Memory: 40 bytes for each cached info

UFFS page buffer

● UFFS page buffer
struct uffs_BufSt{

struct uffs_BufSt *next;
struct uffs_BufSt *prev;
struct uffs_BufSt *nextDirty;
struct uffs_BufSt *prevDirty;
u8 type;
u16 father;
u16 serial;
u16 pageID;
u16 mark;
u16 refCount;
u16 dataLen;
u8 * data;
u8 * ecc;

};

data ecc

uffs_config.h:
MAX_PAGE_BUFFERS (10 ~ 40)
Memory: (36 + page_size) each buffer

Note: UFFS ECC is on page data area.

UFFS page status

● Free page: no page id
assigned yet. Free pages
are always on the bottom.

● Valid page: the page with a
id and have max page offset

● Discarded page: the page
with page id, there are one
or more pages have the
same id and bigger page
offset.

● Unknown status: interrupted
while writing a page.

1
1
1
2
2
3
3
4

0

6
2
4

5

Valid page
Discarded page
Free page

UFFS block status

● Bad block
● Free/Erased block
● Non-full loaded block (have one or more free pages)
● Full loaded block (no free page, page id = physical page offset)

1
1
1
2
2
3
3
4

0

6
2
4

5

Valid page
Discarded page
Free page

1
2
3
4
5
6
7
8

0

10
11
12
13
14
15

9

Bad block Free block Non-full
loaded block

Full loaded
block

UFFS block recover(1)

● Block recover happens when:
– No more free pages available inside the block and
– Data were modified and/or
– Flush the buffer

● Block recover steps:
– (1)Get a free/erased block from erased block list
– (2)Copy pages from old block, write to new block

with newer timestamps
– (3)Erase the old block
– (4)Put the old block to erased block list
– Note: (1) and (4) are operating in memory. (2) and

(3) identified by timestamps, so there are all
interruptible! (Guaranteed integrity across
unexpected power losses)

UFFS block recover(2)

● No block recover if there have enough free pages

1
1
1
2
2
3
3
4

0

6
2
4

5

Valid page

Discarded page

Free page

Since there are free pages,
no block recover happens.
Mark old page as
discarded, and generate a
new page.

1
1
1
2
2
3
3
4

0

6
2
4
3

5

Block 1234 Block 1234

UFFS block recover(3)

● Recover a non-full loaded block

1
1
1
2
2
3
3
4

0

6
2
4
4
6
7

5

Valid page

Discarded page

Free page

1
2
3
4
5
6
7
8

0Since no more free page
available in this block,
modify any pages from 0-
7, or add a new page 8,
will cause block
recovering.

Block 5678Block 1234

UFFS block recover(4)

● Recover a full-loaded block

1
2
3
4
5
6
7
8

0

10
11
12
13
14
15

9

Valid page

Discarded page

Free page

Modify any page of full-
loaded block will cause
block recovering.

1
2
3
4
5
6
7
8

0

10
11
12
13
14
15

9

Block 1234 Block 5678

UFFS bad block management

● Bad block discover when mounting UFFS
● Bad block discover when read/write/erase

– Try ECC error correct
– If ECC fail, there is no way get valid data
– Do not process bad block immediately, leave it at

the end of Read/Write operation.
– Only handle one bad block during the one

read/write operation.
● Check bad block when formating UFFS

How ECC works ? (1)

● XOR: A ^ B = C
– 0 ^ 0 = 0
– 1 ^ 0 = 1
– 0 ^ 1 = 1
– 1 ^ 1 = 0

● Knowing any two of A, B and C, will know the
rest one.

● UFFS ECC: 3 bytes ECC for 256 bytes data
– 256 Bytes ==> 2048 Bits ===> 256(row) X 8(col)

How ECC works ? (2)

UFFS Flash Interface

● struct uffs_FlashOpsSt:
– Use hardware ECC, or leave it to UFFS
– Allow driver do the spare layout, or leave it to

UFFS
– Return flash operation status
– Sequential page programing. No partial page

programing.

UFFS Limitations

● Only one file/dir on one block
● Dynamic wear-leveling, Static wear-leveling

is not implemented.

The next: UFFS2 ?

● Smaller Tree Node (12 bytes), save 25%
RAM

● Use NAND block as buffers
● Multiple files/dirs on one block
● Support 8K, 16K page size
● Static wear-leveling
● Symbol link, FIFO file ?
● NOR flash support ? Other media (SD

card) ? Maybe ...

The End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

