/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 */ /* * File : memheap.c * * Change Logs: * Date Author Notes * 2012-04-10 Bernard first implementation * 2012-10-16 Bernard add the mutex lock for heap object. * 2012-12-29 Bernard memheap can be used as system heap. * change mutex lock to semaphore lock. * 2013-04-10 Bernard add rt_memheap_realloc function. * 2013-05-24 Bernard fix the rt_memheap_realloc issue. * 2013-07-11 Grissiom fix the memory block splitting issue. * 2013-07-15 Grissiom optimize rt_memheap_realloc * 2021-06-03 Flybreak Fix the crash problem after opening Oz optimization on ac6. */ #include #include #ifdef RT_USING_MEMHEAP /* dynamic pool magic and mask */ #define RT_MEMHEAP_MAGIC 0x1ea01ea0 #define RT_MEMHEAP_MASK 0xfffffffe #define RT_MEMHEAP_USED 0x01 #define RT_MEMHEAP_FREED 0x00 #define RT_MEMHEAP_IS_USED(i) ((i)->magic & RT_MEMHEAP_USED) #define RT_MEMHEAP_MINIALLOC 12 #define RT_MEMHEAP_SIZE RT_ALIGN(sizeof(struct rt_memheap_item), RT_ALIGN_SIZE) #define MEMITEM_SIZE(item) ((rt_ubase_t)item->next - (rt_ubase_t)item - RT_MEMHEAP_SIZE) #define MEMITEM(ptr) (struct rt_memheap_item*)((rt_uint8_t*)ptr - RT_MEMHEAP_SIZE) #ifdef RT_USING_MEMTRACE /** * @brief This function will set a new name for memheap. * * @param item is a pointer point to a memheap object. * * @param name is the new name to be set. */ rt_inline void rt_memheap_setname(struct rt_memheap_item *item, const char *name) { int index; rt_uint8_t *ptr; ptr = (rt_uint8_t *) & (item->next_free); for (index = 0; index < sizeof(void *); index ++) { if (name[index] == '\0') break; ptr[index] = name[index]; } if (name[index] == '\0') ptr[index] = '\0'; else { ptr = (rt_uint8_t *) & (item->prev_free); for (index = 0; index < sizeof(void *) && (index + sizeof(void *)) < RT_NAME_MAX; index ++) { if (name[sizeof(void *) + index] == '\0') break; ptr[index] = name[sizeof(void *) + index]; } if (name[sizeof(void *) + index] == '\0') ptr[index] = '\0'; } } /** * @brief This function will set a new name for memheap. * * @param ptr is a pointer point to a memheap object. * * @param name is the new name to be set. */ void rt_mem_set_tag(void *ptr, const char *name) { struct rt_memheap_item *item; if (ptr && name) { item = MEMITEM(ptr); rt_memheap_setname(item, name); } } #endif /* RT_USING_MEMTRACE */ /** * @brief This function initializes a piece of memory called memheap. * * @note The initialized memory pool will be: * +-----------------------------------+--------------------------+ * | whole freed memory block | Used Memory Block Tailer | * +-----------------------------------+--------------------------+ * * block_list --> whole freed memory block * * The length of Used Memory Block Tailer is 0, * which is prevents block merging across list * * @param memheap is a pointer of the memheap object. * * @param name is the name of the memheap. * * @param start_addr is the start address of the memheap. * * @param size is the size of the memheap. * * @return RT_EOK */ rt_err_t rt_memheap_init(struct rt_memheap *memheap, const char *name, void *start_addr, rt_size_t size) { struct rt_memheap_item *item; RT_ASSERT(memheap != RT_NULL); /* initialize pool object */ rt_object_init(&(memheap->parent), RT_Object_Class_MemHeap, name); memheap->start_addr = start_addr; memheap->pool_size = RT_ALIGN_DOWN(size, RT_ALIGN_SIZE); memheap->available_size = memheap->pool_size - (2 * RT_MEMHEAP_SIZE); memheap->max_used_size = memheap->pool_size - memheap->available_size; /* initialize the free list header */ item = &(memheap->free_header); item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); item->pool_ptr = memheap; item->next = RT_NULL; item->prev = RT_NULL; item->next_free = item; item->prev_free = item; /* set the free list to free list header */ memheap->free_list = item; /* initialize the first big memory block */ item = (struct rt_memheap_item *)start_addr; item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); item->pool_ptr = memheap; item->next = RT_NULL; item->prev = RT_NULL; item->next_free = item; item->prev_free = item; #ifdef RT_USING_MEMTRACE rt_memset(item->owner_thread_name, ' ', sizeof(item->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ item->next = (struct rt_memheap_item *) ((rt_uint8_t *)item + memheap->available_size + RT_MEMHEAP_SIZE); item->prev = item->next; /* block list header */ memheap->block_list = item; /* place the big memory block to free list */ item->next_free = memheap->free_list->next_free; item->prev_free = memheap->free_list; memheap->free_list->next_free->prev_free = item; memheap->free_list->next_free = item; /* move to the end of memory pool to build a small tailer block, * which prevents block merging */ item = item->next; /* it's a used memory block */ item->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED); item->pool_ptr = memheap; item->next = (struct rt_memheap_item *)start_addr; item->prev = (struct rt_memheap_item *)start_addr; /* not in free list */ item->next_free = item->prev_free = RT_NULL; /* initialize semaphore lock */ rt_sem_init(&(memheap->lock), name, 1, RT_IPC_FLAG_PRIO); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("memory heap: start addr 0x%08x, size %d, free list header 0x%08x\n", start_addr, size, &(memheap->free_header))); return RT_EOK; } RTM_EXPORT(rt_memheap_init); /** * @brief This function will remove a memheap from the system. * * @param heap is a pointer of memheap object. * * @return RT_EOK */ rt_err_t rt_memheap_detach(struct rt_memheap *heap) { RT_ASSERT(heap); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); RT_ASSERT(rt_object_is_systemobject(&heap->parent)); rt_sem_detach(&heap->lock); rt_object_detach(&(heap->parent)); /* Return a successful completion. */ return RT_EOK; } RTM_EXPORT(rt_memheap_detach); /** * @brief Allocate a block of memory with a minimum of 'size' bytes on memheap. * * @param heap is a pointer for memheap object. * * @param size is the minimum size of the requested block in bytes. * * @return the pointer to allocated memory or NULL if no free memory was found. */ void *rt_memheap_alloc(struct rt_memheap *heap, rt_size_t size) { rt_err_t result; rt_uint32_t free_size; struct rt_memheap_item *header_ptr; RT_ASSERT(heap != RT_NULL); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); /* align allocated size */ size = RT_ALIGN(size, RT_ALIGN_SIZE); if (size < RT_MEMHEAP_MINIALLOC) size = RT_MEMHEAP_MINIALLOC; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate %d on heap:%8.*s", size, RT_NAME_MAX, heap->parent.name)); if (size < heap->available_size) { /* search on free list */ free_size = 0; /* lock memheap */ result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return RT_NULL; } /* get the first free memory block */ header_ptr = heap->free_list->next_free; while (header_ptr != heap->free_list && free_size < size) { /* get current freed memory block size */ free_size = MEMITEM_SIZE(header_ptr); if (free_size < size) { /* move to next free memory block */ header_ptr = header_ptr->next_free; } } /* determine if the memory is available. */ if (free_size >= size) { /* a block that satisfies the request has been found. */ /* determine if the block needs to be split. */ if (free_size >= (size + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC)) { struct rt_memheap_item *new_ptr; /* split the block. */ new_ptr = (struct rt_memheap_item *) (((rt_uint8_t *)header_ptr) + size + RT_MEMHEAP_SIZE); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]\n", header_ptr, header_ptr->next, header_ptr->prev, new_ptr)); /* mark the new block as a memory block and freed. */ new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); /* put the pool pointer into the new block. */ new_ptr->pool_ptr = heap; #ifdef RT_USING_MEMTRACE rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ /* break down the block list */ new_ptr->prev = header_ptr; new_ptr->next = header_ptr->next; header_ptr->next->prev = new_ptr; header_ptr->next = new_ptr; /* remove header ptr from free list */ header_ptr->next_free->prev_free = header_ptr->prev_free; header_ptr->prev_free->next_free = header_ptr->next_free; header_ptr->next_free = RT_NULL; header_ptr->prev_free = RT_NULL; /* insert new_ptr to free list */ new_ptr->next_free = heap->free_list->next_free; new_ptr->prev_free = heap->free_list; heap->free_list->next_free->prev_free = new_ptr; heap->free_list->next_free = new_ptr; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x\n", new_ptr->next_free, new_ptr->prev_free)); /* decrement the available byte count. */ heap->available_size = heap->available_size - size - RT_MEMHEAP_SIZE; if (heap->pool_size - heap->available_size > heap->max_used_size) heap->max_used_size = heap->pool_size - heap->available_size; } else { /* decrement the entire free size from the available bytes count. */ heap->available_size = heap->available_size - free_size; if (heap->pool_size - heap->available_size > heap->max_used_size) heap->max_used_size = heap->pool_size - heap->available_size; /* remove header_ptr from free list */ RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("one block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x\n", header_ptr, header_ptr->next_free, header_ptr->prev_free)); header_ptr->next_free->prev_free = header_ptr->prev_free; header_ptr->prev_free->next_free = header_ptr->next_free; header_ptr->next_free = RT_NULL; header_ptr->prev_free = RT_NULL; } /* Mark the allocated block as not available. */ header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED); #ifdef RT_USING_MEMTRACE if (rt_thread_self()) rt_memcpy(header_ptr->owner_thread_name, rt_thread_self()->name, sizeof(header_ptr->owner_thread_name)); else rt_memcpy(header_ptr->owner_thread_name, "NONE", sizeof(header_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ /* release lock */ rt_sem_release(&(heap->lock)); /* Return a memory address to the caller. */ RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("alloc mem: memory[0x%08x], heap[0x%08x], size: %d\n", (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE), header_ptr, size)); return (void *)((rt_uint8_t *)header_ptr + RT_MEMHEAP_SIZE); } /* release lock */ rt_sem_release(&(heap->lock)); } RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("allocate memory: failed\n")); /* Return the completion status. */ return RT_NULL; } RTM_EXPORT(rt_memheap_alloc); /** * @brief This function will change the size of previously allocated memory block. * * @param heap is a pointer to the memheap object, which will reallocate * memory from the block * * @param ptr is a pointer to start address of memory. * * @param newsize is the required new size. * * @return the changed memory block address. */ void *rt_memheap_realloc(struct rt_memheap *heap, void *ptr, rt_size_t newsize) { rt_err_t result; rt_size_t oldsize; struct rt_memheap_item *header_ptr; struct rt_memheap_item *new_ptr; RT_ASSERT(heap); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); if (newsize == 0) { rt_memheap_free(ptr); return RT_NULL; } /* align allocated size */ newsize = RT_ALIGN(newsize, RT_ALIGN_SIZE); if (newsize < RT_MEMHEAP_MINIALLOC) newsize = RT_MEMHEAP_MINIALLOC; if (ptr == RT_NULL) { return rt_memheap_alloc(heap, newsize); } /* get memory block header and get the size of memory block */ header_ptr = (struct rt_memheap_item *) ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE); oldsize = MEMITEM_SIZE(header_ptr); /* re-allocate memory */ if (newsize > oldsize) { void *new_ptr; /* Fix the crash problem after opening Oz optimization on ac6 */ volatile struct rt_memheap_item *next_ptr; /* lock memheap */ result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return RT_NULL; } next_ptr = header_ptr->next; /* header_ptr should not be the tail */ RT_ASSERT(next_ptr > header_ptr); /* check whether the following free space is enough to expand */ if (!RT_MEMHEAP_IS_USED(next_ptr)) { rt_int32_t nextsize; nextsize = MEMITEM_SIZE(next_ptr); RT_ASSERT(next_ptr > 0); /* Here is the ASCII art of the situation that we can make use of * the next free node without alloc/memcpy, |*| is the control * block: * * oldsize free node * |*|-----------|*|----------------------|*| * newsize >= minialloc * |*|----------------|*|-----------------|*| */ if (nextsize + oldsize > newsize + RT_MEMHEAP_MINIALLOC) { /* decrement the entire free size from the available bytes count. */ heap->available_size = heap->available_size - (newsize - oldsize); if (heap->pool_size - heap->available_size > heap->max_used_size) heap->max_used_size = heap->pool_size - heap->available_size; /* remove next_ptr from free list */ RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("remove block: block[0x%08x], next_free 0x%08x, prev_free 0x%08x", next_ptr, next_ptr->next_free, next_ptr->prev_free)); next_ptr->next_free->prev_free = next_ptr->prev_free; next_ptr->prev_free->next_free = next_ptr->next_free; next_ptr->next->prev = next_ptr->prev; next_ptr->prev->next = next_ptr->next; /* build a new one on the right place */ next_ptr = (struct rt_memheap_item *)((char *)ptr + newsize); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new free block: block[0x%08x] nextm[0x%08x] prevm[0x%08x]", next_ptr, next_ptr->next, next_ptr->prev)); /* mark the new block as a memory block and freed. */ next_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); /* put the pool pointer into the new block. */ next_ptr->pool_ptr = heap; #ifdef RT_USING_MEMTRACE rt_memset((void *)next_ptr->owner_thread_name, ' ', sizeof(next_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ next_ptr->prev = header_ptr; next_ptr->next = header_ptr->next; header_ptr->next->prev = (struct rt_memheap_item *)next_ptr; header_ptr->next = (struct rt_memheap_item *)next_ptr; /* insert next_ptr to free list */ next_ptr->next_free = heap->free_list->next_free; next_ptr->prev_free = heap->free_list; heap->free_list->next_free->prev_free = (struct rt_memheap_item *)next_ptr; heap->free_list->next_free = (struct rt_memheap_item *)next_ptr; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new ptr: next_free 0x%08x, prev_free 0x%08x", next_ptr->next_free, next_ptr->prev_free)); /* release lock */ rt_sem_release(&(heap->lock)); return ptr; } } /* release lock */ rt_sem_release(&(heap->lock)); /* re-allocate a memory block */ new_ptr = (void *)rt_memheap_alloc(heap, newsize); if (new_ptr != RT_NULL) { rt_memcpy(new_ptr, ptr, oldsize < newsize ? oldsize : newsize); rt_memheap_free(ptr); } return new_ptr; } /* don't split when there is less than one node space left */ if (newsize + RT_MEMHEAP_SIZE + RT_MEMHEAP_MINIALLOC >= oldsize) return ptr; /* lock memheap */ result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return RT_NULL; } /* split the block. */ new_ptr = (struct rt_memheap_item *) (((rt_uint8_t *)header_ptr) + newsize + RT_MEMHEAP_SIZE); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("split: block[0x%08x] nextm[0x%08x] prevm[0x%08x] to new[0x%08x]\n", header_ptr, header_ptr->next, header_ptr->prev, new_ptr)); /* mark the new block as a memory block and freed. */ new_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); /* put the pool pointer into the new block. */ new_ptr->pool_ptr = heap; #ifdef RT_USING_MEMTRACE rt_memset(new_ptr->owner_thread_name, ' ', sizeof(new_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ /* break down the block list */ new_ptr->prev = header_ptr; new_ptr->next = header_ptr->next; header_ptr->next->prev = new_ptr; header_ptr->next = new_ptr; /* determine if the block can be merged with the next neighbor. */ if (!RT_MEMHEAP_IS_USED(new_ptr->next)) { struct rt_memheap_item *free_ptr; /* merge block with next neighbor. */ free_ptr = new_ptr->next; heap->available_size = heap->available_size - MEMITEM_SIZE(free_ptr); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x\n", header_ptr, header_ptr->next_free, header_ptr->prev_free)); free_ptr->next->prev = new_ptr; new_ptr->next = free_ptr->next; /* remove free ptr from free list */ free_ptr->next_free->prev_free = free_ptr->prev_free; free_ptr->prev_free->next_free = free_ptr->next_free; } /* insert the split block to free list */ new_ptr->next_free = heap->free_list->next_free; new_ptr->prev_free = heap->free_list; heap->free_list->next_free->prev_free = new_ptr; heap->free_list->next_free = new_ptr; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("new free ptr: next_free 0x%08x, prev_free 0x%08x\n", new_ptr->next_free, new_ptr->prev_free)); /* increment the available byte count. */ heap->available_size = heap->available_size + MEMITEM_SIZE(new_ptr); /* release lock */ rt_sem_release(&(heap->lock)); /* return the old memory block */ return ptr; } RTM_EXPORT(rt_memheap_realloc); /** * @brief This function will release the allocated memory block by * rt_malloc. The released memory block is taken back to system heap. * * @param ptr the address of memory which will be released. */ void rt_memheap_free(void *ptr) { rt_err_t result; struct rt_memheap *heap; struct rt_memheap_item *header_ptr, *new_ptr; rt_uint32_t insert_header; /* NULL check */ if (ptr == RT_NULL) return; /* set initial status as OK */ insert_header = 1; new_ptr = RT_NULL; header_ptr = (struct rt_memheap_item *) ((rt_uint8_t *)ptr - RT_MEMHEAP_SIZE); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("free memory: memory[0x%08x], block[0x%08x]\n", ptr, header_ptr)); /* check magic */ if (header_ptr->magic != (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)) { RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("bad magic:0x%08x @ memheap\n", header_ptr->magic)); } RT_ASSERT(header_ptr->magic == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)); /* check whether this block of memory has been over-written. */ RT_ASSERT((header_ptr->next->magic & RT_MEMHEAP_MASK) == RT_MEMHEAP_MAGIC); /* get pool ptr */ heap = header_ptr->pool_ptr; RT_ASSERT(heap); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); /* lock memheap */ result = rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); if (result != RT_EOK) { rt_set_errno(result); return ; } /* Mark the memory as available. */ header_ptr->magic = (RT_MEMHEAP_MAGIC | RT_MEMHEAP_FREED); /* Adjust the available number of bytes. */ heap->available_size += MEMITEM_SIZE(header_ptr); /* Determine if the block can be merged with the previous neighbor. */ if (!RT_MEMHEAP_IS_USED(header_ptr->prev)) { RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: left node 0x%08x\n", header_ptr->prev)); /* adjust the available number of bytes. */ heap->available_size += RT_MEMHEAP_SIZE; /* yes, merge block with previous neighbor. */ (header_ptr->prev)->next = header_ptr->next; (header_ptr->next)->prev = header_ptr->prev; /* move header pointer to previous. */ header_ptr = header_ptr->prev; /* don't insert header to free list */ insert_header = 0; } /* determine if the block can be merged with the next neighbor. */ if (!RT_MEMHEAP_IS_USED(header_ptr->next)) { /* adjust the available number of bytes. */ heap->available_size += RT_MEMHEAP_SIZE; /* merge block with next neighbor. */ new_ptr = header_ptr->next; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("merge: right node 0x%08x, next_free 0x%08x, prev_free 0x%08x\n", new_ptr, new_ptr->next_free, new_ptr->prev_free)); new_ptr->next->prev = header_ptr; header_ptr->next = new_ptr->next; /* remove new ptr from free list */ new_ptr->next_free->prev_free = new_ptr->prev_free; new_ptr->prev_free->next_free = new_ptr->next_free; } if (insert_header) { /* no left merge, insert to free list */ header_ptr->next_free = heap->free_list->next_free; header_ptr->prev_free = heap->free_list; heap->free_list->next_free->prev_free = header_ptr; heap->free_list->next_free = header_ptr; RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("insert to free list: next_free 0x%08x, prev_free 0x%08x\n", header_ptr->next_free, header_ptr->prev_free)); } #ifdef RT_USING_MEMTRACE rt_memset(header_ptr->owner_thread_name, ' ', sizeof(header_ptr->owner_thread_name)); #endif /* RT_USING_MEMTRACE */ /* release lock */ rt_sem_release(&(heap->lock)); } RTM_EXPORT(rt_memheap_free); #ifdef RT_USING_FINSH static void _memheap_dump_tag(struct rt_memheap_item *item) { rt_uint8_t name[2 * sizeof(void *)]; rt_uint8_t *ptr; ptr = (rt_uint8_t *) & (item->next_free); rt_memcpy(name, ptr, sizeof(void *)); ptr = (rt_uint8_t *) & (item->prev_free); rt_memcpy(&name[sizeof(void *)], ptr, sizeof(void *)); rt_kprintf("%.*s", 2 * sizeof(void *), name); } /** * @brief This function will print the memheap infomation. * * @param heap is the pointer to the memheap to get information. * * @return 0 */ int rt_memheap_dump(struct rt_memheap *heap) { struct rt_memheap_item *item, *end; if (heap == RT_NULL) return 0; RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); rt_kprintf("\n[%.*s] [0x%08x - 0x%08x]->\n", RT_NAME_MAX, heap->parent.name, (rt_ubase_t)heap->start_addr, (rt_ubase_t)heap->start_addr + heap->pool_size); rt_kprintf("------------------------------\n"); /* lock memheap */ rt_sem_take(&(heap->lock), RT_WAITING_FOREVER); item = heap->block_list; end = (struct rt_memheap_item *)((rt_uint8_t *)heap->start_addr + heap->pool_size - RT_MEMHEAP_SIZE); /* for each memory block */ while ((rt_ubase_t)item < ((rt_ubase_t)end)) { if (RT_MEMHEAP_IS_USED(item) && ((item->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC)) rt_kprintf("0x%08x", item + 1); if (item->magic == (RT_MEMHEAP_MAGIC | RT_MEMHEAP_USED)) { rt_kprintf("0x%08x: %-8d ", item + 1, MEMITEM_SIZE(item)); _memheap_dump_tag(item); rt_kprintf("\n"); } else { rt_kprintf("0x%08x: %-8d \n", item + 1, MEMITEM_SIZE(item)); } item = item->next; } rt_sem_release(&(heap->lock)); return 0; } int memheaptrace(void) { int count = rt_object_get_length(RT_Object_Class_MemHeap); struct rt_memheap **heaps; if (count > 0) { int index; #if defined(RT_USING_FINSH) && defined(MSH_USING_BUILT_IN_COMMANDS) extern int list_memheap(void); #endif heaps = (struct rt_memheap **)rt_malloc(sizeof(struct rt_memheap *) * count); if (heaps == RT_NULL) return 0; #if defined(RT_USING_FINSH) && defined(MSH_USING_BUILT_IN_COMMANDS) list_memheap(); #endif rt_kprintf("memheap header size: %d\n", RT_MEMHEAP_SIZE); count = rt_object_get_pointers(RT_Object_Class_MemHeap, (rt_object_t *)heaps, count); for (index = 0; index < count; index++) { rt_memheap_dump(heaps[index]); } rt_free(heaps); } return 0; } MSH_CMD_EXPORT(memheaptrace, dump memory trace information); #endif /* RT_USING_FINSH */ #ifdef RT_USING_MEMHEAP_AS_HEAP static struct rt_memheap _heap; /** * @brief This function initializes a heap for system. * * @param begin_addr is the start address of the memory. * * @param end_addr is the end address of the memory. */ void rt_system_heap_init(void *begin_addr, void *end_addr) { RT_ASSERT((rt_uint32_t)end_addr > (rt_uint32_t)begin_addr); /* initialize a default heap in the system */ rt_memheap_init(&_heap, "heap", begin_addr, (rt_uint32_t)end_addr - (rt_uint32_t)begin_addr); } /** * @brief Allocate a block of memory with a minimum of 'size' bytes. * * @param size is the minimum size of the requested block in bytes. */ void *rt_malloc(rt_size_t size) { void *ptr; /* try to allocate in system heap */ ptr = rt_memheap_alloc(&_heap, size); #ifdef RT_USING_MEMHEAP_AUTO_BINDING if (ptr == RT_NULL) { struct rt_object *object; struct rt_list_node *node; struct rt_memheap *heap; struct rt_object_information *information; /* try to allocate on other memory heap */ information = rt_object_get_information(RT_Object_Class_MemHeap); RT_ASSERT(information != RT_NULL); for (node = information->object_list.next; node != &(information->object_list); node = node->next) { object = rt_list_entry(node, struct rt_object, list); heap = (struct rt_memheap *)object; RT_ASSERT(heap); RT_ASSERT(rt_object_get_type(&heap->parent) == RT_Object_Class_MemHeap); /* not allocate in the default system heap */ if (heap == &_heap) continue; ptr = rt_memheap_alloc(heap, size); if (ptr != RT_NULL) break; } } #endif /* RT_USING_MEMHEAP_AUTO_BINDING */ #ifdef RT_USING_MEMTRACE if (ptr == RT_NULL) { RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("malloc[%d] => NULL", size)); } else { struct rt_memheap_item *item = MEMITEM(ptr); if (rt_thread_self()) rt_memheap_setname(item, rt_thread_self()->name); else rt_memheap_setname(item, ""); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("malloc => 0x%08x : %d", ptr, size)); } #endif /* RT_USING_MEMTRACE */ return ptr; } RTM_EXPORT(rt_malloc); /** * @brief This function will release the previously allocated memory block by * rt_malloc. The released memory block is taken back to system heap. * * @param rmem the address of memory which will be released. */ void rt_free(void *rmem) { rt_memheap_free(rmem); } RTM_EXPORT(rt_free); /** * @brief This function will change the size of previously allocated memory block. * * @param rmem is the pointer to memory allocated by rt_malloc. * * @param newsize is the required new size. * * @return the changed memory block address. */ void *rt_realloc(void *rmem, rt_size_t newsize) { void *new_ptr; struct rt_memheap_item *header_ptr; if (rmem == RT_NULL) return rt_malloc(newsize); if (newsize == 0) { rt_free(rmem); return RT_NULL; } /* get old memory item */ header_ptr = (struct rt_memheap_item *) ((rt_uint8_t *)rmem - RT_MEMHEAP_SIZE); new_ptr = rt_memheap_realloc(header_ptr->pool_ptr, rmem, newsize); if (new_ptr == RT_NULL && newsize != 0) { /* allocate memory block from other memheap */ new_ptr = rt_malloc(newsize); if (new_ptr != RT_NULL && rmem != RT_NULL) { rt_size_t oldsize; /* get the size of old memory block */ oldsize = MEMITEM_SIZE(header_ptr); if (newsize > oldsize) rt_memcpy(new_ptr, rmem, oldsize); else rt_memcpy(new_ptr, rmem, newsize); rt_free(rmem); } } #ifdef RT_USING_MEMTRACE if (new_ptr == RT_NULL) { RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("realloc[%d] => NULL", newsize)); } else { struct rt_memheap_item *item = MEMITEM(new_ptr); if (rt_thread_self()) rt_memheap_setname(item, rt_thread_self()->name); else rt_memheap_setname(item, ""); RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("realloc => 0x%08x : %d", new_ptr, newsize)); } #endif /* RT_USING_MEMTRACE */ return new_ptr; } RTM_EXPORT(rt_realloc); /** * @brief This function will contiguously allocate enough space for count objects * that are size bytes of memory each and returns a pointer to the allocated * memory. * * @note The allocated memory is filled with bytes of value zero. * * @param count is the number of objects to allocate. * * @param size is the size of one object to allocate. * * @return pointer to allocated memory pointer. */ void *rt_calloc(rt_size_t count, rt_size_t size) { void *ptr; rt_size_t total_size; total_size = count * size; ptr = rt_malloc(total_size); if (ptr != RT_NULL) { /* clean memory */ rt_memset(ptr, 0, total_size); } #ifdef RT_USING_MEMTRACE if (ptr == RT_NULL) { RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("calloc[%d x %d] => NULL", count, size)); } else { RT_DEBUG_LOG(RT_DEBUG_MEMHEAP, ("calloc => 0x%08x : %d", ptr, count * size)); } #endif /* RT_USING_MEMTRACE */ return ptr; } RTM_EXPORT(rt_calloc); /** * @brief This function will caculate the total memory, the used memory, and * the max used memory. * * @param total is a pointer to get the total size of the memory. * * @param used is a pointer to get the size of memory used. * * @param max_used is a pointer to get the maximum memory used. */ void rt_memory_info(rt_uint32_t *total, rt_uint32_t *used, rt_uint32_t *max_used) { if (total != RT_NULL) *total = _heap.pool_size; if (used != RT_NULL) *used = _heap.pool_size - _heap.available_size; if (max_used != RT_NULL) *max_used = _heap.max_used_size; } #endif /* RT_USING_MEMHEAP_AS_HEAP */ #ifdef RT_USING_MEMTRACE /** * @brief This function will print the used memheap infomation. * * @param mh is a pointer of the memheap object. */ void dump_used_memheap(struct rt_memheap *mh) { struct rt_memheap_item *header_ptr; rt_uint32_t block_size; rt_kprintf("\nmemory heap address:\n"); rt_kprintf("heap_ptr: 0x%08x\n", mh->start_addr); rt_kprintf("free : 0x%08x\n", mh->available_size); rt_kprintf("max_used: 0x%08x\n", mh->max_used_size); rt_kprintf("size : 0x%08x\n", mh->pool_size); rt_kprintf("\n--memory used information --\n"); header_ptr = mh->block_list; while (header_ptr->next != mh->block_list) { if ((header_ptr->magic & RT_MEMHEAP_MASK) != RT_MEMHEAP_MAGIC) { rt_kprintf("[0x%08x - incorrect magic: 0x%08x\n", header_ptr, header_ptr->magic); break; } /* get current memory block size */ block_size = MEMITEM_SIZE(header_ptr); if (block_size < 0) break; if (RT_MEMHEAP_IS_USED(header_ptr)) { /* dump information */ rt_kprintf("[0x%08x - %d - %c%c%c%c] used\n", header_ptr, block_size, header_ptr->owner_thread_name[0], header_ptr->owner_thread_name[1], header_ptr->owner_thread_name[2], header_ptr->owner_thread_name[3]); } else { /* dump information */ rt_kprintf("[0x%08x - %d - %c%c%c%c] free\n", header_ptr, block_size, header_ptr->owner_thread_name[0], header_ptr->owner_thread_name[1], header_ptr->owner_thread_name[2], header_ptr->owner_thread_name[3]); } /* move to next used memory block */ header_ptr = header_ptr->next; } } void memtrace_heap() { struct rt_object_information *info; struct rt_list_node *list; struct rt_memheap *mh; struct rt_list_node *node; info = rt_object_get_information(RT_Object_Class_MemHeap); list = &info->object_list; for (node = list->next; node != list; node = node->next) { mh = (struct rt_memheap *)rt_list_entry(node, struct rt_object, list); dump_used_memheap(mh); } } #ifdef RT_USING_FINSH #include MSH_CMD_EXPORT(memtrace_heap, dump memory trace for heap); #endif /* RT_USING_FINSH */ #endif /* RT_USING_MEMTRACE */ #endif /* RT_USING_MEMHEAP */