/* * Copyright (c) 2022-2024 HPMicro * SPDX-License-Identifier: BSD-3-Clause * */ #include "board.h" #include "hpm_uart_drv.h" #include "hpm_gptmr_drv.h" #include "hpm_i2c_drv.h" #include "hpm_gpio_drv.h" #include "hpm_femc_drv.h" #include "pinmux.h" #include "hpm_pmp_drv.h" #include "assert.h" #include "hpm_clock_drv.h" #include "hpm_sysctl_drv.h" #include "hpm_sdxc_drv.h" #include "hpm_pwm_drv.h" #include "hpm_trgm_drv.h" #include "hpm_pllctlv2_drv.h" #include "hpm_enet_drv.h" #include "hpm_pcfg_drv.h" #include "hpm_debug_console.h" static board_timer_cb timer_cb; ATTR_PLACE_AT_NONCACHEABLE_BSS static bool init_delay_flag; /** * @brief FLASH configuration option definitions: * option[0]: * [31:16] 0xfcf9 - FLASH configuration option tag * [15:4] 0 - Reserved * [3:0] option words (exclude option[0]) * option[1]: * [31:28] Flash probe type * 0 - SFDP SDR / 1 - SFDP DDR * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address) * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V * 6 - OctaBus DDR (SPI -> OPI DDR) * 8 - Xccela DDR (SPI -> OPI DDR) * 10 - EcoXiP DDR (SPI -> OPI DDR) * [27:24] Command Pads after Power-on Reset * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI * [23:20] Command Pads after Configuring FLASH * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only) * 0 - Not needed * 1 - QE bit is at bit 6 in Status Register 1 * 2 - QE bit is at bit1 in Status Register 2 * 3 - QE bit is at bit7 in Status Register 2 * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31 * [15:8] Dummy cycles * 0 - Auto-probed / detected / default value * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet * [7:4] Misc. * 0 - Not used * 1 - SPI mode * 2 - Internal loopback * 3 - External DQS * [3:0] Frequency option * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz * * option[2] (Effective only if the bit[3:0] in option[0] > 1) * [31:20] Reserved * [19:16] IO voltage * 0 - 3V / 1 - 1.8V * [15:12] Pin group * 0 - 1st group / 1 - 2nd group * [11:8] Connection selection * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively) * [7:0] Drive Strength * 0 - Default value * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports * JESD216) * [31:16] reserved * [15:12] Sector Erase Command Option, not required here * [11:8] Sector Size Option, not required here * [7:0] Flash Size Option * 0 - 4MB / 1 - 8MB / 2 - 16MB */ #if defined(FLASH_XIP) && FLASH_XIP __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90001, 0x00000007, 0x0, 0x0}; #endif #if defined(FLASH_UF2) && FLASH_UF2 ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE; #endif void board_init_console(void) { #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE #if CONSOLE_TYPE_UART == BOARD_CONSOLE_TYPE console_config_t cfg; /* uart needs to configure pin function before enabling clock, otherwise the level change of uart rx pin when configuring pin function will cause a wrong data to be received. And a uart rx dma request will be generated by default uart fifo dma trigger level. */ init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE); /* Configure the UART clock to 24MHz */ clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U); clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0); cfg.type = BOARD_CONSOLE_TYPE; cfg.base = (uint32_t) BOARD_CONSOLE_UART_BASE; cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME); cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE; if (status_success != console_init(&cfg)) { /* failed to initialize debug console */ while (1) { } } #else while (1) { } #endif #endif } void board_print_clock_freq(void) { printf("==============================\n"); printf(" %s clock summary\n", BOARD_NAME); printf("==============================\n"); printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0)); printf("axi:\t\t %luHz\n", clock_get_frequency(clock_axi)); printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb)); printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0)); printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0)); printf("xpi1:\t\t %luHz\n", clock_get_frequency(clock_xpi1)); printf("femc:\t\t %luHz\n", clock_get_frequency(clock_femc)); printf("==============================\n"); } void board_init_uart(UART_Type *ptr) { /* configure uart's pin before opening uart's clock */ init_uart_pins(ptr); board_init_uart_clock(ptr); } void board_print_banner(void) { const uint8_t banner[] = {"\n\ ----------------------------------------------------------------------\n\ $$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n\ $$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n\ $$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n\ $$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n\ $$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n\ $$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n\ $$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n\ \\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n\ ----------------------------------------------------------------------\n"}; #ifdef SDK_VERSION_STRING printf("hpm_sdk: %s\n", SDK_VERSION_STRING); #endif printf("%s", banner); } void board_ungate_mchtmr_at_lp_mode(void) { /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */ sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock); } void board_init(void) { pcfg_dcdc_set_voltage(HPM_PCFG, 1100); board_init_clock(); board_init_console(); board_init_pmp(); #if BOARD_SHOW_CLOCK board_print_clock_freq(); #endif #if BOARD_SHOW_BANNER board_print_banner(); #endif } void board_init_sdram_pins(void) { init_sdram_pins(); } uint32_t board_init_femc_clock(void) { clock_add_to_group(clock_femc, 0); /* Configure the SDRAM to 166MHz */ clock_set_source_divider(clock_femc, clk_src_pll0_clk1, 2U); return clock_get_frequency(clock_femc); } void board_delay_us(uint32_t us) { clock_cpu_delay_us(us); } void board_delay_ms(uint32_t ms) { clock_cpu_delay_ms(ms); } void board_timer_isr(void) { if (gptmr_check_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH))) { gptmr_clear_status(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_STAT_MASK(BOARD_CALLBACK_TIMER_CH)); timer_cb(); } } SDK_DECLARE_EXT_ISR_M(BOARD_CALLBACK_TIMER_IRQ, board_timer_isr); void board_timer_create(uint32_t ms, board_timer_cb cb) { uint32_t gptmr_freq; gptmr_channel_config_t config; timer_cb = cb; gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config); clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0); gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME); config.reload = gptmr_freq / 1000 * ms; gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false); gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH)); intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1); gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH); } void board_i2c_bus_clear(I2C_Type *ptr) { init_i2c_pins_as_gpio(ptr); if (ptr == BOARD_APP_I2C_BASE) { gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN); gpio_set_pin_input(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN); if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN)) { printf("CLK is low, please power cycle the board\n"); while (1) { } } if (!gpio_read_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SDA_GPIO_INDEX, BOARD_I2C_SDA_GPIO_PIN)) { printf("SDA is low, try to issue I2C bus clear\n"); } else { printf("I2C bus is ready\n"); return; } gpio_set_pin_output(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN); while (1) { for (uint32_t i = 0; i < 9; i++) { gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 1); board_delay_ms(10); gpio_write_pin(BOARD_I2C_GPIO_CTRL, BOARD_I2C_SCL_GPIO_INDEX, BOARD_I2C_SCL_GPIO_PIN, 0); board_delay_ms(10); } board_delay_ms(100); } printf("I2C bus is cleared\n"); } } void board_init_i2c(I2C_Type *ptr) { i2c_config_t config; hpm_stat_t stat; uint32_t freq; if (ptr == NULL) { return; } board_i2c_bus_clear(ptr); init_i2c_pins(ptr); clock_add_to_group(clock_i2c0, 0); clock_add_to_group(clock_i2c1, 0); clock_add_to_group(clock_i2c2, 0); clock_add_to_group(clock_i2c3, 0); /* Configure the I2C clock to 24MHz */ clock_set_source_divider(BOARD_APP_I2C_CLK_NAME, clk_src_osc24m, 1U); config.i2c_mode = i2c_mode_normal; config.is_10bit_addressing = false; freq = clock_get_frequency(BOARD_APP_I2C_CLK_NAME); stat = i2c_init_master(ptr, freq, &config); if (stat != status_success) { printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr); while (1) { } } } uint32_t board_init_spi_clock(SPI_Type *ptr) { if (ptr == HPM_SPI3) { /* SPI3 clock configure */ clock_add_to_group(clock_spi3, 0); clock_set_source_divider(clock_spi3, clk_src_pll0_clk0, 5U); /* 80MHz */ return clock_get_frequency(clock_spi3); } return 0; } void board_init_gpio_pins(void) { init_gpio_pins(); } void board_init_spi_pins(SPI_Type *ptr) { init_spi_pins(ptr); } void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr) { init_spi_pins_with_gpio_as_cs(ptr); gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN), GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL); } void board_write_spi_cs(uint32_t pin, uint8_t state) { gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state); } uint8_t board_get_led_gpio_off_level(void) { return BOARD_LED_OFF_LEVEL; } void board_init_led_pins(void) { init_led_pins(); gpio_set_pin_output_with_initial(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, board_get_led_gpio_off_level()); } void board_led_toggle(void) { gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN); } void board_led_write(uint8_t state) { gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state); } void board_init_usb_pins(void) { /* set pull-up for USBx ID pin */ init_usb_pins(); /* configure USBx ID pin as input function */ gpio_set_pin_input(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN); } uint8_t board_get_usb_id_status(void) { return gpio_read_pin(BOARD_USB0_ID_PORT, BOARD_USB0_ID_GPIO_INDEX, BOARD_USB0_ID_GPIO_PIN); } void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level) { (void) usb_index; (void) level; } void board_init_pmp(void) { extern uint32_t __noncacheable_start__[]; extern uint32_t __noncacheable_end__[]; uint32_t start_addr = (uint32_t) __noncacheable_start__; uint32_t end_addr = (uint32_t) __noncacheable_end__; uint32_t length = end_addr - start_addr; if (length == 0) { return; } /* Ensure the address and the length are power of 2 aligned */ assert((length & (length - 1U)) == 0U); assert((start_addr & (length - 1U)) == 0U); pmp_entry_t pmp_entry[3] = {0}; pmp_entry[0].pmp_addr = PMP_NAPOT_ADDR(0x0000000, 0x80000000); pmp_entry[0].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK); pmp_entry[1].pmp_addr = PMP_NAPOT_ADDR(0x80000000, 0x80000000); pmp_entry[1].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK); pmp_entry[2].pmp_addr = PMP_NAPOT_ADDR(start_addr, length); pmp_entry[2].pmp_cfg.val = PMP_CFG(READ_EN, WRITE_EN, EXECUTE_EN, ADDR_MATCH_NAPOT, REG_UNLOCK); pmp_entry[2].pma_addr = PMA_NAPOT_ADDR(start_addr, length); pmp_entry[2].pma_cfg.val = PMA_CFG(ADDR_MATCH_NAPOT, MEM_TYPE_MEM_NON_CACHE_BUF, AMO_EN); pmp_config(&pmp_entry[0], ARRAY_SIZE(pmp_entry)); } void board_init_clock(void) { uint32_t cpu0_freq = clock_get_frequency(clock_cpu0); if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) { /* Configure the External OSC ramp-up time: ~9ms */ pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U); /* Select clock setting preset1 */ sysctl_clock_set_preset(HPM_SYSCTL, 2); } /* Add most Clocks to group 0 */ /* not open uart clock in this API, uart should configure pin function before opening clock */ clock_add_to_group(clock_cpu0, 0); clock_add_to_group(clock_ahbp, 0); clock_add_to_group(clock_axic, 0); clock_add_to_group(clock_axis, 0); clock_add_to_group(clock_mchtmr0, 0); clock_add_to_group(clock_femc, 0); clock_add_to_group(clock_xpi0, 0); clock_add_to_group(clock_xpi1, 0); clock_add_to_group(clock_gptmr0, 0); clock_add_to_group(clock_gptmr1, 0); clock_add_to_group(clock_gptmr2, 0); clock_add_to_group(clock_gptmr3, 0); clock_add_to_group(clock_i2c0, 0); clock_add_to_group(clock_i2c1, 0); clock_add_to_group(clock_i2c2, 0); clock_add_to_group(clock_i2c3, 0); clock_add_to_group(clock_spi0, 0); clock_add_to_group(clock_spi1, 0); clock_add_to_group(clock_spi2, 0); clock_add_to_group(clock_spi3, 0); clock_add_to_group(clock_can0, 0); clock_add_to_group(clock_can1, 0); clock_add_to_group(clock_sdxc0, 0); clock_add_to_group(clock_ptpc, 0); clock_add_to_group(clock_ref0, 0); clock_add_to_group(clock_ref1, 0); clock_add_to_group(clock_watchdog0, 0); clock_add_to_group(clock_eth0, 0); clock_add_to_group(clock_sdp, 0); clock_add_to_group(clock_xdma, 0); clock_add_to_group(clock_ram0, 0); clock_add_to_group(clock_usb0, 0); clock_add_to_group(clock_kman, 0); clock_add_to_group(clock_gpio, 0); clock_add_to_group(clock_mbx0, 0); clock_add_to_group(clock_hdma, 0); clock_add_to_group(clock_rng, 0); clock_add_to_group(clock_mot0, 0); clock_add_to_group(clock_mot1, 0); clock_add_to_group(clock_acmp, 0); clock_add_to_group(clock_dao, 0); clock_add_to_group(clock_synt, 0); clock_add_to_group(clock_lmm0, 0); clock_add_to_group(clock_pdm, 0); clock_add_to_group(clock_adc0, 0); clock_add_to_group(clock_adc1, 0); clock_add_to_group(clock_adc2, 0); clock_add_to_group(clock_dac0, 0); clock_add_to_group(clock_i2s0, 0); clock_add_to_group(clock_i2s1, 0); clock_add_to_group(clock_ffa0, 0); clock_add_to_group(clock_tsns, 0); /* Connect Group0 to CPU0 */ clock_connect_group_to_cpu(0, 0); /* Configure CPU to 480MHz, AXI/AHB to 160MHz */ sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clock_source_pll1_clk0, 1, 3, 3); /* Configure PLL1_CLK0 Post Divider to 1.2 */ pllctlv2_set_postdiv(HPM_PLLCTLV2, 1, 0, 1); /* Configure PLL1 clock frequencey to 576MHz, the PLL1_CLK0 frequency = 576MHz / 1.2 = 480MHz */ pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 1, 576000000); clock_update_core_clock(); /* Configure mchtmr to 24MHz */ clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1); } uint32_t board_init_dao_clock(void) { return clock_get_frequency(clock_dao); } uint32_t board_init_pdm_clock(void) { return clock_get_frequency(clock_pdm); } hpm_stat_t board_set_audio_pll_clock(uint32_t freq) { return pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 2, freq); /* pll2clk */ } uint32_t board_init_i2s_clock(I2S_Type *ptr) { (void) ptr; return 0; } void board_init_adc16_pins(void) { init_adc_pins(); } uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb) { uint32_t freq = 0; if (ptr == HPM_ADC0) { if (clk_src_ahb) { /* Configure the ADC clock from AHB (@160MHz by default)*/ clock_set_adc_source(clock_adc0, clk_adc_src_ahb0); } else { /* Configure the ADC clock from pll0_clk1 divided by 2 (@166MHz by default) */ clock_set_adc_source(clock_adc0, clk_adc_src_ana0); clock_set_source_divider(clock_ana0, clk_src_pll0_clk1, 2U); } freq = clock_get_frequency(clock_adc0); } else if (ptr == HPM_ADC1) { if (clk_src_ahb) { /* Configure the ADC clock from AHB (@160MHz by default)*/ clock_set_adc_source(clock_adc1, clk_adc_src_ahb0); } else { /* Configure the ADC clock from pll1_clk1 divided by 2 (@166MHz by default) */ clock_set_adc_source(clock_adc1, clk_adc_src_ana1); clock_set_source_divider(clock_ana1, clk_src_pll0_clk1, 2U); } freq = clock_get_frequency(clock_adc1); } else if (ptr == HPM_ADC2) { if (clk_src_ahb) { /* Configure the ADC clock from AHB (@160MHz by default)*/ clock_set_adc_source(clock_adc2, clk_adc_src_ahb0); } else { /* Configure the ADC clock from pll1_clk1 divided by 2 (@166MHz by default) */ clock_set_adc_source(clock_adc2, clk_adc_src_ana2); clock_set_source_divider(clock_ana2, clk_src_pll0_clk1, 2U); } freq = clock_get_frequency(clock_adc2); } return freq; } uint32_t board_init_dac_clock(DAC_Type *ptr, bool clk_src_ahb) { uint32_t freq = 0; if (ptr == HPM_DAC) { if (clk_src_ahb == true) { /* Configure the DAC clock to 160MHz */ clock_set_dac_source(clock_dac0, clk_dac_src_ahb0); } else { /* Configure the DAC clock to 166MHz */ clock_set_dac_source(clock_dac0, clk_dac_src_ana3); clock_set_source_divider(clock_ana3, clk_src_pll0_clk1, 2); } freq = clock_get_frequency(clock_dac0); } return freq; } void board_init_can(CAN_Type *ptr) { init_can_pins(ptr); } uint32_t board_init_can_clock(CAN_Type *ptr) { uint32_t freq = 0; if (ptr == HPM_CAN0) { /* Set the CAN0 peripheral clock to 80MHz */ clock_set_source_divider(clock_can0, clk_src_pll0_clk0, 5); freq = clock_get_frequency(clock_can0); } else if (ptr == HPM_CAN1) { /* Set the CAN1 peripheral clock to 80MHz */ clock_set_source_divider(clock_can1, clk_src_pll0_clk0, 5); freq = clock_get_frequency(clock_can1); } else { /* Invalid CAN instance */ } return freq; } uint32_t board_init_gptmr_clock(GPTMR_Type *ptr) { uint32_t freq = 0; if (ptr == HPM_GPTMR0) { clock_add_to_group(clock_gptmr0, 0); clock_set_source_divider(clock_gptmr0, clk_src_pll1_clk1, 4); freq = clock_get_frequency(clock_gptmr0); } else if (ptr == HPM_GPTMR1) { clock_add_to_group(clock_gptmr1, 0); clock_set_source_divider(clock_gptmr1, clk_src_pll1_clk1, 4); freq = clock_get_frequency(clock_gptmr1); } else if (ptr == HPM_GPTMR2) { clock_add_to_group(clock_gptmr2, 0); clock_set_source_divider(clock_gptmr2, clk_src_pll1_clk1, 4); freq = clock_get_frequency(clock_gptmr2); } else if (ptr == HPM_GPTMR3) { clock_add_to_group(clock_gptmr3, 0); clock_set_source_divider(clock_gptmr3, clk_src_pll1_clk1, 4); freq = clock_get_frequency(clock_gptmr3); } else { /* Invalid instance */ } return freq; } void board_sd_power_switch(SDXC_Type *ptr, bool on_off) { /* This feature is not supported */ } /* * this function will be called during startup to initialize external memory for data use */ void _init_ext_ram(void) { uint32_t femc_clk_in_hz; board_init_sdram_pins(); femc_clk_in_hz = board_init_femc_clock(); femc_config_t config = {0}; femc_sdram_config_t sdram_config = {0}; femc_default_config(HPM_FEMC, &config); femc_init(HPM_FEMC, &config); femc_get_typical_sdram_config(HPM_FEMC, &sdram_config); sdram_config.bank_num = FEMC_SDRAM_BANK_NUM_4; sdram_config.prescaler = 0x3; sdram_config.burst_len_in_byte = 8; sdram_config.auto_refresh_count_in_one_burst = 1; sdram_config.col_addr_bits = FEMC_SDRAM_COLUMN_ADDR_9_BITS; sdram_config.cas_latency = FEMC_SDRAM_CAS_LATENCY_3; sdram_config.refresh_to_refresh_in_ns = 60; /* Trc */ sdram_config.refresh_recover_in_ns = 60; /* Trc */ sdram_config.act_to_precharge_in_ns = 42; /* Tras */ sdram_config.act_to_rw_in_ns = 18; /* Trcd */ sdram_config.precharge_to_act_in_ns = 18; /* Trp */ sdram_config.act_to_act_in_ns = 12; /* Trrd */ sdram_config.write_recover_in_ns = 12; /* Twr/Tdpl */ sdram_config.self_refresh_recover_in_ns = 72; /* Txsr */ sdram_config.cs = BOARD_SDRAM_CS; sdram_config.base_address = BOARD_SDRAM_ADDRESS; sdram_config.size_in_byte = BOARD_SDRAM_SIZE; sdram_config.port_size = BOARD_SDRAM_PORT_SIZE; sdram_config.refresh_count = BOARD_SDRAM_REFRESH_COUNT; sdram_config.refresh_in_ms = BOARD_SDRAM_REFRESH_IN_MS; sdram_config.delay_cell_disable = true; sdram_config.delay_cell_value = 0; femc_config_sdram(HPM_FEMC, femc_clk_in_hz, &sdram_config); } uint32_t board_sd_configure_clock(SDXC_Type *ptr, uint32_t freq, bool need_inverse) { uint32_t actual_freq = 0; do { if (ptr != HPM_SDXC0) { break; } clock_name_t sdxc_clk = clock_sdxc0; sdxc_enable_inverse_clock(ptr, false); sdxc_enable_sd_clock(ptr, false); /* Configure the SDXC Frequency to 200MHz */ clock_set_source_divider(sdxc_clk, clk_src_pll0_clk0, 2); sdxc_enable_freq_selection(ptr); /* Configure the clock below 400KHz for the identification state */ if (freq <= 400000UL) { sdxc_set_clock_divider(ptr, 600); } /* configure the clock to 24MHz for the SDR12/Default speed */ else if (freq <= 26000000UL) { sdxc_set_clock_divider(ptr, 8); } /* Configure the clock to 50MHz for the SDR25/High speed/50MHz DDR/50MHz SDR */ else if (freq <= 52000000UL) { sdxc_set_clock_divider(ptr, 4); } /* Configure the clock to 100MHz for the SDR50 */ else if (freq <= 100000000UL) { sdxc_set_clock_divider(ptr, 2); } /* Configure the clock to 166MHz for SDR104/HS200/HS400 */ else if (freq <= 208000000UL) { sdxc_set_clock_divider(ptr, 1); } /* For other unsupported clock ranges, configure the clock to 24MHz */ else { sdxc_set_clock_divider(ptr, 8); } if (need_inverse) { sdxc_enable_inverse_clock(ptr, true); } sdxc_enable_sd_clock(ptr, true); actual_freq = clock_get_frequency(sdxc_clk) / sdxc_get_clock_divider(ptr); } while (false); return actual_freq; } void board_sd_switch_pins_to_1v8(SDXC_Type *ptr) { (void) ptr; /* This feature is not supported */ } bool board_sd_detect_card(SDXC_Type *ptr) { return sdxc_is_card_inserted(ptr); } hpm_stat_t board_init_enet_ptp_clock(ENET_Type *ptr) { /* set clock source */ if (ptr == HPM_ENET0) { /* make sure pll0_clk0 output clock at 400MHz to get a clock at 100MHz for ent0 ptp clock */ clock_set_source_divider(clock_ptp0, clk_src_pll0_clk0, 4); /* 100MHz */ } else { return status_invalid_argument; } return status_success; } hpm_stat_t board_init_enet_rmii_reference_clock(ENET_Type *ptr, bool internal) { /* Configure Enet clock to output reference clock */ if (ptr == HPM_ENET0) { if (internal) { /* set pll output frequency at 1GHz */ if (pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1000000000UL) == status_success) { /* set pll2_clk1 output frequence at 250MHz from PLL2 divided by 4 (1 + 15 / 5) */ pllctlv2_set_postdiv(HPM_PLLCTLV2, PLLCTLV2_PLL_PLL2, 1, 15); /* set eth clock frequency at 50MHz for enet0 */ clock_set_source_divider(clock_eth0, clk_src_pll2_clk1, 5); } else { return status_fail; } } } else { return status_invalid_argument; } enet_rmii_enable_clock(ptr, internal); return status_success; } hpm_stat_t board_init_enet_pins(ENET_Type *ptr) { init_enet_pins(ptr); return status_success; } hpm_stat_t board_reset_enet_phy(ENET_Type *ptr) { (void) ptr; return status_success; } void board_init_dac_pins(DAC_Type *ptr) { init_dac_pins(ptr); } uint32_t board_init_uart_clock(UART_Type *ptr) { uint32_t freq = 0U; if (ptr == HPM_UART0) { clock_set_source_divider(clock_uart0, clk_src_osc24m, 1); clock_add_to_group(clock_uart0, 0); freq = clock_get_frequency(clock_uart0); } else if (ptr == HPM_UART1) { clock_set_source_divider(clock_uart1, clk_src_osc24m, 1); clock_add_to_group(clock_uart1, 0); freq = clock_get_frequency(clock_uart1); } else if (ptr == HPM_UART2) { clock_set_source_divider(clock_uart2, clk_src_osc24m, 1); clock_add_to_group(clock_uart2, 0); freq = clock_get_frequency(clock_uart2); } else { /* Not supported */ } return freq; } uint32_t board_init_pwm_clock(PWM_Type *ptr) { uint32_t freq = 0; (void) ptr; return freq; } uint8_t board_get_enet_dma_pbl(ENET_Type *ptr) { (void) ptr; return enet_pbl_16; } hpm_stat_t board_enable_enet_irq(ENET_Type *ptr) { if (ptr == HPM_ENET0) { intc_m_enable_irq(IRQn_ENET0); } else { return status_invalid_argument; } return status_success; } hpm_stat_t board_disable_enet_irq(ENET_Type *ptr) { if (ptr == HPM_ENET0) { intc_m_disable_irq(IRQn_ENET0); } else { return status_invalid_argument; } return status_success; } void board_init_enet_pps_pins(ENET_Type *ptr) { (void) ptr; init_enet_pps_pins(); }