/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Email: opensource_embedded@phytium.com.cn * * Change Logs: * Date Author Notes * 2023-03-20 zhangyan first version * */ #include "rtconfig.h" #ifdef RT_USING_QSPI #include #ifdef RT_USING_SMART #include #endif #include "rtdevice.h" #include "drv_qspi.h" #include "fqspi_flash.h" #include "rtdbg.h" #include "fiopad.h" #include "fqspi_hw.h" #define DAT_LENGTH 128 #define QSPI_ALIGNED_BYTE 4 static rt_uint8_t rd_buf[DAT_LENGTH]; static rt_uint8_t wr_buf[DAT_LENGTH]; static phytium_qspi_bus phytium_qspi = { .fqspi_id = FQSPI0_ID, }; static struct rt_qspi_device *qspi_device; /* phytium device bus handle */ static char qspi_bus_name[RT_NAME_MAX] = "QSPIBUS"; static char qspi_dev_name[RT_NAME_MAX] = "QSPIDEV"; extern FIOPadCtrl iopad_ctrl; rt_err_t FQspiInit(phytium_qspi_bus *phytium_qspi_bus) { FError ret = FT_SUCCESS; rt_uint32_t qspi_id = phytium_qspi_bus->fqspi_id; #ifdef USING_QSPI_CHANNEL0 #if defined CONFIG_TARGET_E2000D FIOPadSetFunc(&iopad_ctrl, FIOPAD_AR51_REG0_OFFSET, FIOPAD_FUNC0); #elif defined CONFIG_TARGET_E2000Q FIOPadSetFunc(&iopad_ctrl, FIOPAD_AR55_REG0_OFFSET, FIOPAD_FUNC0); #endif #elif defined USING_QSPI_CHANNEL1 #if defined CONFIG_TARGET_E2000D FIOPadSetFunc(&iopad_ctrl, FIOPAD_AR45_REG0_OFFSET, FIOPAD_FUNC0); #elif defined CONFIG_TARGET_E2000Q FIOPadSetFunc(&iopad_ctrl, FIOPAD_AR49_REG0_OFFSET, FIOPAD_FUNC0); #endif #endif FQspiDeInitialize(&(phytium_qspi_bus->fqspi)); FQspiConfig pconfig = *FQspiLookupConfig(qspi_id); #ifdef RT_USING_SMART pconfig.base_addr = (uintptr)rt_ioremap((void *)pconfig.base_addr, 0x1000); #endif /* Norflash init, include reset and read flash_size */ ret = FQspiCfgInitialize(&(phytium_qspi_bus->fqspi), &pconfig); if (FT_SUCCESS != ret) { LOG_E("Qspi init failed.\n"); return RT_ERROR; } else { rt_kprintf("Qspi init successfully.\n"); } /* Detect connected flash infomation */ ret = FQspiFlashDetect(&(phytium_qspi_bus->fqspi)); if (FT_SUCCESS != ret) { LOG_E("Qspi flash detect failed.\n"); return RT_ERROR; } else { rt_kprintf("Qspi flash detect successfully.\n"); } return RT_EOK; } static rt_err_t phytium_qspi_configure(struct rt_spi_device *device, struct rt_spi_configuration *configuration) { RT_ASSERT(device != RT_NULL); RT_ASSERT(configuration != RT_NULL); phytium_qspi_bus *qspi_bus; qspi_bus = (phytium_qspi_bus *)(struct phytium_qspi_bus *) device->bus->parent.user_data; rt_err_t ret = RT_EOK; ret = FQspiInit(qspi_bus); if (RT_EOK != ret) { qspi_bus->init = RT_FALSE; rt_kprintf("Qspi init failed!!!\n"); return RT_ERROR; } qspi_bus->init = RT_EOK; return RT_EOK; } static FError QspiFlashWriteData(FQspiCtrl *pctrl, u8 command, uintptr addr, const u8 *buf, size_t len) { RT_ASSERT(pctrl && buf); FError ret = FQSPI_SUCCESS; u32 loop = 0; const u32 mask = (u32)GENMASK(1, 0); u32 reg_val = 0; u32 val = 0; u32 aligned_bit = 0; u8 tmp[QSPI_ALIGNED_BYTE] = {0xff, 0xff, 0xff, 0xff}; uintptr base_addr = pctrl->config.base_addr; if (FT_COMPONENT_IS_READY != pctrl->is_ready) { LOG_E("Nor flash not ready !!!"); return FQSPI_NOT_READY; } /* Flash write enable */ FQspiFlashEnableWrite(pctrl); memset(&pctrl->wr_cfg, 0, sizeof(pctrl->wr_cfg)); /* set cmd region, command */ pctrl->wr_cfg.wr_cmd = command; pctrl->wr_cfg.wr_wait = FQSPI_WAIT_ENABLE; /* clear addr select bit */ pctrl->wr_cfg.wr_addr_sel = 0; /* set wr mode, use buffer */ pctrl->wr_cfg.wr_mode = FQSPI_USE_BUFFER_ENABLE; /* set sck_sel region, clk_div */ pctrl->wr_cfg.wr_sck_sel = FQSPI_SCK_DIV_128; /* set addr_sel region, FQSPI_ADDR_SEL_3 or FQSPI_ADDR_SEL_4 */ switch (command) { case FQSPI_FLASH_CMD_PP: case FQSPI_FLASH_CMD_QPP: pctrl->wr_cfg.wr_addr_sel = FQSPI_ADDR_SEL_3; break; case FQSPI_FLASH_CMD_4PP: case FQSPI_FLASH_CMD_4QPP: pctrl->wr_cfg.wr_addr_sel = FQSPI_ADDR_SEL_4; break; default: ret |= FQSPI_NOT_SUPPORT; return ret; break; } /*write wr_cfg to Write config register 0x08 */ FQspiWrCfgConfig(pctrl); if (IS_ALIGNED(addr, QSPI_ALIGNED_BYTE)) /* if copy src is aligned by 4 bytes */ { /* write alligned data into memory space */ for (loop = 0; loop < (len >> 2); loop++) { FQSPI_DAT_WRITE(addr + QSPI_ALIGNED_BYTE * loop, *(u32 *)(buf + QSPI_ALIGNED_BYTE * loop)); } /* write not alligned data into memory space */ if (len & mask) { addr = addr + (len & ~mask); memcpy(tmp, buf + (len & ~mask), len & mask); FQSPI_DAT_WRITE(addr, *(u32 *)(tmp)); } } else { aligned_bit = (addr & mask); addr = addr - aligned_bit; reg_val = FQSPI_READ_REG32(addr, 0); for (loop = 0; loop < (QSPI_ALIGNED_BYTE - aligned_bit); loop++) { val = (val << 8) | (buf[loop]); reg_val &= (~(0xff << (loop * 8))); } reg_val |= val; reg_val = __builtin_bswap32(reg_val); FQSPI_DAT_WRITE(addr, reg_val); buf = buf + loop; len = len - loop; addr = addr + QSPI_ALIGNED_BYTE; LOG_E("addr=%p, buf=%p, len=%d, value=%#x\r\n", addr, buf, len, *(u32 *)(buf)); for (loop = 0; loop < (len >> 2); loop++) { FQSPI_DAT_WRITE(addr + QSPI_ALIGNED_BYTE * loop, *(u32 *)(buf + QSPI_ALIGNED_BYTE * loop)); } if (!IS_ALIGNED(len, QSPI_ALIGNED_BYTE)) { buf = buf + QSPI_ALIGNED_BYTE * loop; len = len - QSPI_ALIGNED_BYTE * loop; addr = addr + QSPI_ALIGNED_BYTE * loop; memcpy(tmp, buf, len); FQSPI_DAT_WRITE(addr, *(u32 *)(tmp)); } } /* flush buffer data to Flash */ FQspiWriteFlush(base_addr); ret = FQspiFlashWaitForCmd(pctrl); return ret; } size_t QspiFlashReadData(FQspiCtrl *pctrl, uintptr addr, u8 *buf, size_t len) { /* addr of copy dst or src might be zero */ RT_ASSERT(pctrl && buf); size_t loop = 0; const size_t cnt = len / QSPI_ALIGNED_BYTE; /* cnt number of 4-bytes need copy */ const size_t remain = len % QSPI_ALIGNED_BYTE; /* remain number of 1-byte not aligned */ u8 align_buf[QSPI_ALIGNED_BYTE]; size_t copy_len = 0; intptr src_addr = (intptr)addr; /* conver to 32/64 bit addr */ intptr dst_addr = (intptr)buf; if (FT_COMPONENT_IS_READY != pctrl->is_ready) { LOG_E("Nor flash not ready !!!"); return 0; } if (0 == pctrl->rd_cfg.rd_cmd) { LOG_E("Nor flash read command is not ready !!!"); return 0; } if (0 == len) { return 0; } if (IS_ALIGNED(src_addr, QSPI_ALIGNED_BYTE)) /* if copy src is aligned by 4 bytes */ { /* read 4-bytes aligned buf part */ for (loop = 0; loop < cnt; loop++) { *(u32 *)dst_addr = *(volatile u32 *)(src_addr); src_addr += QSPI_ALIGNED_BYTE; dst_addr += QSPI_ALIGNED_BYTE; } copy_len += (loop << 2); if (remain > 0) { *(u32 *)align_buf = *(volatile u32 *)(src_addr); } /* read remain un-aligned buf byte by byte */ for (loop = 0; loop < remain; loop++) { *(u8 *)dst_addr = align_buf[loop]; dst_addr += 1; } copy_len += loop; } else /* if copy src is not aligned */ { /* read byte by byte */ for (loop = 0; loop < len; loop++) { *(u8 *)dst_addr = *(volatile u8 *)(src_addr); dst_addr += 1; src_addr += 1; } copy_len += loop; } return copy_len; } static rt_ssize_t phytium_qspi_xfer(struct rt_spi_device *device, struct rt_spi_message *message) { RT_ASSERT(device != RT_NULL); RT_ASSERT(message != RT_NULL); phytium_qspi_bus *qspi_bus; struct rt_qspi_message *qspi_message = (struct rt_qspi_message *)message; rt_uint32_t cmd = qspi_message->instruction.content; rt_uint32_t flash_addr = qspi_message->address.content; const void *rcvb = message->recv_buf; const void *sndb = message->send_buf; FError ret = FT_SUCCESS; qspi_bus = (phytium_qspi_bus *)(struct phytium_qspi_bus *) device->bus->parent.user_data; #ifdef USING_QSPI_CHANNEL0 qspi_bus->fqspi.config.channel = 0; #elif defined USING_QSPI_CHANNEL1 qspi_bus->fqspi.config.channel = 1; #endif uintptr addr = qspi_bus->fqspi.config.mem_start + qspi_bus->fqspi.config.channel * qspi_bus->fqspi.flash_size + flash_addr; #ifdef RT_USING_SMART addr = (uintptr)rt_ioremap((void *)addr, 0x2000); #endif /*Distinguish the write mode according to different commands*/ if (cmd == FQSPI_FLASH_CMD_PP || cmd == FQSPI_FLASH_CMD_QPP || cmd == FQSPI_FLASH_CMD_4PP || cmd == FQSPI_FLASH_CMD_4QPP) { rt_uint8_t len = message->length; rt_memcpy(&wr_buf, (char *)message->send_buf, len); ret = FQspiFlashErase(&(qspi_bus->fqspi), FQSPI_FLASH_CMD_SE, flash_addr); if (FT_SUCCESS != ret) { LOG_E("Failed to erase mem, test result 0x%x.\r\n", ret); return RT_ERROR; } /* write norflash data */ ret = QspiFlashWriteData(&(qspi_bus->fqspi), cmd, addr, (u8 *)&wr_buf, len); if (FT_SUCCESS != ret) { LOG_E("Failed to write mem, test result 0x%x.\r\n", ret); return RT_ERROR; } else { rt_kprintf("Write successfully!!!\r\n"); } return RT_EOK; } /*Distinguish the read mode according to different commands*/ if (cmd == FQSPI_FLASH_CMD_READ || cmd == FQSPI_FLASH_CMD_4READ || cmd == FQSPI_FLASH_CMD_FAST_READ || cmd == FQSPI_FLASH_CMD_4FAST_READ || cmd == FQSPI_FLASH_CMD_DUAL_READ || cmd == FQSPI_FLASH_CMD_QIOR || cmd == FQSPI_FLASH_CMD_4QIOR) { ret |= FQspiFlashReadDataConfig(&(qspi_bus->fqspi), cmd); if (FT_SUCCESS != ret) { rt_kprintf("Failed to config read, test result 0x%x.\r\n", ret); return RT_ERROR; } /* read norflash data */ size_t read_len = QspiFlashReadData(&(qspi_bus->fqspi), addr, (u8 *)&rd_buf, DAT_LENGTH); message->length = read_len; if (read_len != DAT_LENGTH) { rt_kprintf("Failed to read mem, read len = %d.\r\n", read_len); return RT_ERROR; } else { rt_kprintf("Read successfully!!!\r\n"); message->recv_buf = &rd_buf; } FtDumpHexByte(message->recv_buf, read_len); return RT_EOK; } if (rcvb) { if (cmd == FQSPI_FLASH_CMD_RDID || cmd == FQSPI_FLASH_CMD_RDSR1 || cmd == FQSPI_FLASH_CMD_RDSR2 || cmd == FQSPI_FLASH_CMD_RDSR3) { ret |= FQspiFlashSpecialInstruction(&(qspi_bus->fqspi), cmd, (u8 *)rcvb, sizeof(rcvb)); if (FT_SUCCESS != ret) { LOG_E("Failed to read flash information.\n"); return RT_ERROR; } } return RT_EOK; } if (sndb) { ret |= FQspiFlashEnableWrite(&(qspi_bus->fqspi)); if (FT_SUCCESS != ret) { LOG_E("Failed to enable flash reg write.\n"); return RT_ERROR; } ret |= FQspiFlashWriteReg(&(qspi_bus->fqspi), cmd, (u8 *)sndb, 1); if (FT_SUCCESS != ret) { LOG_E("Failed to write flash reg.\n"); return RT_ERROR; } return RT_EOK; } rt_kprintf("cmd not found!!!\r\n"); return ret; } static struct rt_spi_ops phytium_qspi_ops = { .configure = phytium_qspi_configure, .xfer = phytium_qspi_xfer, }; rt_err_t phytium_qspi_bus_attach_device(const char *bus_name, const char *device_name) { struct rt_qspi_device *qspi_device; rt_err_t result = RT_EOK; RT_ASSERT(bus_name != RT_NULL); RT_ASSERT(device_name != RT_NULL); qspi_device = (struct rt_qspi_device *)rt_malloc(sizeof(struct rt_qspi_device)); if (qspi_device == RT_NULL) { LOG_E("Qspi bus attach device failed."); result = RT_ENOMEM; goto __exit; } result = rt_spi_bus_attach_device(&(qspi_device->parent), device_name, bus_name, RT_NULL); __exit: if (result != RT_EOK) { if (qspi_device) { rt_free(qspi_device); } } return result; } int rt_hw_qspi_init(void) { int result = RT_EOK; phytium_qspi.qspi_bus.parent.user_data = &phytium_qspi; if (rt_qspi_bus_register(&phytium_qspi.qspi_bus, qspi_bus_name, &phytium_qspi_ops) == RT_EOK) { rt_kprintf("Qspi bus register successfully!!!\n"); } else { LOG_E("Qspi bus register Failed!!!\n"); result = -RT_ERROR; } return result; } INIT_BOARD_EXPORT(rt_hw_qspi_init); /*example*/ struct rt_spi_message write_message; struct rt_spi_message read_message; rt_err_t qspi_init() { rt_err_t res = RT_EOK; res = phytium_qspi_bus_attach_device(qspi_bus_name, qspi_dev_name); RT_ASSERT(res == RT_EOK); qspi_device = (struct rt_qspi_device *)rt_device_find(qspi_dev_name); return res; } /*read cmd example message improvement*/ void ReadCmd(struct rt_spi_message *spi_message) { struct rt_qspi_message *message = (struct rt_qspi_message *) spi_message; message->address.content = 0x360000 ;/*Flash address*/ message->instruction.content = 0x03 ;/*read cmd*/ rt_qspi_transfer_message(qspi_device, message); } /*write cmd example message improvement*/ void WriteCmd(struct rt_spi_message *spi_message) { struct rt_qspi_message *message = (struct rt_qspi_message *) spi_message; message->address.content = 0x360000 ;/*Flash address*/ message->instruction.content = 0x02 ;/*write cmd*/ rt_qspi_transfer_message(qspi_device, message); } /*write cmd example message improvement*/ void qspi_thread(void *parameter) { rt_err_t res; qspi_init(); /*Read and write flash chip fixed area repeatedly*/ write_message.send_buf = "phytium"; write_message.length = strlen((char *)write_message.send_buf) + 1; WriteCmd(&write_message); ReadCmd(&read_message); write_message.send_buf = "phytium hello world!"; write_message.length = strlen((char *)write_message.send_buf) + 1; WriteCmd(&write_message); ReadCmd(&read_message); write_message.send_buf = "Welcome to phytium chip"; write_message.length = strlen((char *)write_message.send_buf) + 1; WriteCmd(&write_message); ReadCmd(&read_message); rt_uint8_t recv; rt_uint8_t cmd = 0x9F;/*read the flash status reg2*/ res = rt_qspi_send_then_recv(qspi_device, &cmd, sizeof(cmd), &recv, sizeof(recv)); RT_ASSERT(res != RT_EOK); rt_kprintf("The status reg = %x \n", recv); } rt_err_t qspi_sample(int argc, char *argv[]) { rt_thread_t thread; rt_err_t res; thread = rt_thread_create("qspi_thread", qspi_thread, RT_NULL, 4096, 25, 10); res = rt_thread_startup(thread); RT_ASSERT(res == RT_EOK); return res; } /* Enter qspi_sample command for testing */ MSH_CMD_EXPORT(qspi_sample, qspi sample); #endif