/* * Copyright (c) 2006-2022, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-11-19 SummerGift first version * 2018-12-25 zylx fix some bugs * 2019-06-10 SummerGift optimize PHY state detection process * 2019-09-03 xiaofan optimize link change detection process * 2020-07-17 wanghaijing support h7 * 2020-11-30 wanghaijing add phy reset */ #include #include #include "board.h" #include "drv_config.h" #ifdef BSP_USING_ETH_H750 #include #include "lwipopts.h" #include "drv_eth.h" /* * Emac driver uses CubeMX tool to generate emac and phy's configuration, * the configuration files can be found in CubeMX_Config folder. */ /* debug option */ #define LOG_TAG "drv.emac" #include #define MAX_ADDR_LEN 6 struct rt_stm32_eth { /* inherit from ethernet device */ struct eth_device parent; #ifndef PHY_USING_INTERRUPT_MODE rt_timer_t poll_link_timer; #endif /* interface address info, hw address */ rt_uint8_t dev_addr[MAX_ADDR_LEN]; /* ETH_Speed */ uint32_t ETH_Speed; /* ETH_Duplex_Mode */ uint32_t ETH_Mode; }; static ETH_HandleTypeDef EthHandle; static ETH_TxPacketConfig TxConfig; static struct rt_stm32_eth stm32_eth_device; static uint8_t PHY_ADDR = 0x1F; static rt_uint32_t reset_pin = 0; #if defined ( __ICCARM__ ) /*!< IAR Compiler */ #pragma location=0x30040000 ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */ #pragma location=0x30040060 ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */ #pragma location=0x30040200 uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffers */ #elif defined ( __CC_ARM ) /* MDK ARM Compiler */ __attribute__((at(0x30040000))) ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]; /* Ethernet Rx DMA Descriptors */ __attribute__((at(0x30040060))) ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]; /* Ethernet Tx DMA Descriptors */ __attribute__((at(0x30040200))) uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE]; /* Ethernet Receive Buffer */ #elif defined ( __GNUC__ ) /* GNU Compiler */ ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT] __attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */ ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT] __attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */ uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_MAX_PACKET_SIZE] __attribute__((section(".RxArraySection"))); /* Ethernet Receive Buffers */ #endif #if defined(ETH_RX_DUMP) || defined(ETH_TX_DUMP) #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ') static void dump_hex(const rt_uint8_t *ptr, rt_size_t buflen) { unsigned char *buf = (unsigned char *)ptr; int i, j; for (i = 0; i < buflen; i += 16) { rt_kprintf("%08X: ", i); for (j = 0; j < 16; j++) if (i + j < buflen) rt_kprintf("%02X ", buf[i + j]); else rt_kprintf(" "); rt_kprintf(" "); for (j = 0; j < 16; j++) if (i + j < buflen) rt_kprintf("%c", __is_print(buf[i + j]) ? buf[i + j] : '.'); rt_kprintf("\n"); } } #endif static void phy_reset(void) { rt_pin_write(reset_pin, PIN_LOW); rt_thread_mdelay(50); rt_pin_write(reset_pin, PIN_HIGH); } /* EMAC initialization function */ static rt_err_t rt_stm32_eth_init(rt_device_t dev) { ETH_MACConfigTypeDef MACConf; uint32_t regvalue = 0; uint8_t status = RT_EOK; __HAL_RCC_D2SRAM3_CLK_ENABLE(); phy_reset(); /* ETHERNET Configuration */ EthHandle.Instance = ETH; EthHandle.Init.MACAddr = (rt_uint8_t *)&stm32_eth_device.dev_addr[0]; EthHandle.Init.MediaInterface = HAL_ETH_RMII_MODE; EthHandle.Init.TxDesc = DMATxDscrTab; EthHandle.Init.RxDesc = DMARxDscrTab; EthHandle.Init.RxBuffLen = ETH_MAX_PACKET_SIZE; SCB_InvalidateDCache(); HAL_ETH_DeInit(&EthHandle); /* configure ethernet peripheral (GPIOs, clocks, MAC, DMA) */ if (HAL_ETH_Init(&EthHandle) != HAL_OK) { LOG_E("eth hardware init failed"); } else { LOG_D("eth hardware init success"); } rt_memset(&TxConfig, 0, sizeof(ETH_TxPacketConfig)); TxConfig.Attributes = ETH_TX_PACKETS_FEATURES_CSUM | ETH_TX_PACKETS_FEATURES_CRCPAD; TxConfig.ChecksumCtrl = ETH_CHECKSUM_IPHDR_PAYLOAD_INSERT_PHDR_CALC; TxConfig.CRCPadCtrl = ETH_CRC_PAD_INSERT; for (int idx = 0; idx < ETH_RX_DESC_CNT; idx++) { HAL_ETH_DescAssignMemory(&EthHandle, idx, &Rx_Buff[idx][0], NULL); } HAL_ETH_SetMDIOClockRange(&EthHandle); for(int i = 0; i <= PHY_ADDR; i ++) { if(HAL_ETH_ReadPHYRegister(&EthHandle, i, PHY_SPECIAL_MODES_REG, ®value) != HAL_OK) { status = RT_ERROR; /* Can't read from this device address continue with next address */ continue; } if((regvalue & PHY_BASIC_STATUS_REG) == i) { PHY_ADDR = i; status = RT_EOK; LOG_D("Found a phy, address:0x%02X", PHY_ADDR); break; } } if(HAL_ETH_WritePHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_CONTROL_REG, PHY_RESET_MASK) == HAL_OK) { HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_SPECIAL_MODES_REG, ®value); uint32_t tickstart = rt_tick_get(); /* wait until software reset is done or timeout occured */ while(regvalue & PHY_RESET_MASK) { if((rt_tick_get() - tickstart) <= 500) { if(HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_CONTROL_REG, ®value) != HAL_OK) { status = RT_ERROR; break; } } else { status = RT_ETIMEOUT; } } } rt_thread_delay(2000); if(HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_CONTROL_REG, ®value) == HAL_OK) { regvalue |= PHY_AUTO_NEGOTIATION_MASK; HAL_ETH_WritePHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_CONTROL_REG, regvalue); eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE); HAL_ETH_GetMACConfig(&EthHandle, &MACConf); MACConf.DuplexMode = ETH_FULLDUPLEX_MODE; MACConf.Speed = ETH_SPEED_100M; HAL_ETH_SetMACConfig(&EthHandle, &MACConf); HAL_ETH_Start_IT(&EthHandle); } else { status = RT_ERROR; } return status; } static rt_err_t rt_stm32_eth_open(rt_device_t dev, rt_uint16_t oflag) { LOG_D("emac open"); return RT_EOK; } static rt_err_t rt_stm32_eth_close(rt_device_t dev) { LOG_D("emac close"); return RT_EOK; } static rt_size_t rt_stm32_eth_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { LOG_D("emac read"); rt_set_errno(-RT_ENOSYS); return 0; } static rt_size_t rt_stm32_eth_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { LOG_D("emac write"); rt_set_errno(-RT_ENOSYS); return 0; } static rt_err_t rt_stm32_eth_control(rt_device_t dev, int cmd, void *args) { switch (cmd) { case NIOCTL_GADDR: /* get mac address */ if (args) rt_memcpy(args, stm32_eth_device.dev_addr, 6); else return -RT_ERROR; break; default : break; } return RT_EOK; } /* ethernet device interface */ /* transmit data*/ rt_err_t rt_stm32_eth_tx(rt_device_t dev, struct pbuf *p) { rt_err_t ret = RT_ERROR; HAL_StatusTypeDef state; uint32_t i = 0, framelen = 0; struct pbuf *q; ETH_BufferTypeDef Txbuffer[ETH_TX_DESC_CNT]; rt_memset(Txbuffer, 0, ETH_TX_DESC_CNT * sizeof(ETH_BufferTypeDef)); for (q = p; q != NULL; q = q->next) { if (i >= ETH_TX_DESC_CNT) return ERR_IF; Txbuffer[i].buffer = q->payload; Txbuffer[i].len = q->len; framelen += q->len; if (i > 0) { Txbuffer[i - 1].next = &Txbuffer[i]; } if (q->next == NULL) { Txbuffer[i].next = NULL; } i++; } TxConfig.Length = framelen; TxConfig.TxBuffer = Txbuffer; #ifdef ETH_TX_DUMP rt_kprintf("Tx dump, len= %d\r\n", framelen); dump_hex(&Txbuffer[0]); #endif if (stm32_eth_device.parent.link_status) { SCB_CleanInvalidateDCache(); state = HAL_ETH_Transmit(&EthHandle, &TxConfig, 1000); if (state != HAL_OK) { LOG_W("eth transmit frame faild: %d", EthHandle.ErrorCode); EthHandle.ErrorCode = HAL_ETH_STATE_READY; EthHandle.gState = HAL_ETH_STATE_READY; } } else { LOG_E("eth transmit frame faild, netif not up"); } ret = ERR_OK; return ret; } /* receive data*/ struct pbuf *rt_stm32_eth_rx(rt_device_t dev) { uint32_t framelength = 0; rt_uint16_t l; struct pbuf *p = RT_NULL, *q; ETH_BufferTypeDef RxBuff; uint32_t alignedAddr; if(HAL_ETH_GetRxDataBuffer(&EthHandle, &RxBuff) == HAL_OK) { HAL_ETH_GetRxDataLength(&EthHandle, &framelength); /* Build Rx descriptor to be ready for next data reception */ HAL_ETH_BuildRxDescriptors(&EthHandle); /* Invalidate data cache for ETH Rx Buffers */ alignedAddr = (uint32_t)RxBuff.buffer & ~0x1F; SCB_InvalidateDCache_by_Addr((uint32_t *)alignedAddr, (uint32_t)RxBuff.buffer - alignedAddr + framelength); p = pbuf_alloc(PBUF_RAW, framelength, PBUF_RAM); if (p != NULL) { for (q = p, l = 0; q != NULL; q = q->next) { memcpy((rt_uint8_t *)q->payload, (rt_uint8_t *)&RxBuff.buffer[l], q->len); l = l + q->len; } } } return p; } /* interrupt service routine */ void ETH_IRQHandler(void) { /* enter interrupt */ rt_interrupt_enter(); HAL_ETH_IRQHandler(&EthHandle); /* leave interrupt */ rt_interrupt_leave(); } void HAL_ETH_RxCpltCallback(ETH_HandleTypeDef *heth) { rt_err_t result; result = eth_device_ready(&(stm32_eth_device.parent)); if (result != RT_EOK) LOG_I("RxCpltCallback err = %d", result); } void HAL_ETH_ErrorCallback(ETH_HandleTypeDef *heth) { LOG_E("eth err"); } enum { PHY_LINK = (1 << 0), PHY_100M = (1 << 1), PHY_FULL_DUPLEX = (1 << 2), }; static void phy_linkchange() { static rt_uint8_t phy_speed = 0; rt_uint8_t phy_speed_new = 0; rt_uint32_t status; HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_BASIC_STATUS_REG, (uint32_t *)&status); LOG_D("phy basic status reg is 0x%X", status); if (status & (PHY_AUTONEGO_COMPLETE_MASK | PHY_LINKED_STATUS_MASK)) { rt_uint32_t SR = 0; phy_speed_new |= PHY_LINK; HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_Status_REG, (uint32_t *)&SR); LOG_D("phy control status reg is 0x%X", SR); if (PHY_Status_SPEED_100M(SR)) { phy_speed_new |= PHY_100M; } if (PHY_Status_FULL_DUPLEX(SR)) { phy_speed_new |= PHY_FULL_DUPLEX; } } if (phy_speed != phy_speed_new) { phy_speed = phy_speed_new; if (phy_speed & PHY_LINK) { LOG_D("link up"); if (phy_speed & PHY_100M) { LOG_D("100Mbps"); stm32_eth_device.ETH_Speed = ETH_SPEED_100M; } else { stm32_eth_device.ETH_Speed = ETH_SPEED_10M; LOG_D("10Mbps"); } if (phy_speed & PHY_FULL_DUPLEX) { LOG_D("full-duplex"); stm32_eth_device.ETH_Mode = ETH_FULLDUPLEX_MODE; } else { LOG_D("half-duplex"); stm32_eth_device.ETH_Mode = ETH_HALFDUPLEX_MODE; } /* send link up. */ eth_device_linkchange(&stm32_eth_device.parent, RT_TRUE); } else { LOG_I("link down"); eth_device_linkchange(&stm32_eth_device.parent, RT_FALSE); } } } #ifdef PHY_USING_INTERRUPT_MODE static void eth_phy_isr(void *args) { rt_uint32_t status = 0; HAL_ETH_ReadPHYRegister(&EthHandle, PHY_ADDR, PHY_INTERRUPT_FLAG_REG, (uint32_t *)&status); LOG_D("phy interrupt status reg is 0x%X", status); phy_linkchange(); } #endif /* PHY_USING_INTERRUPT_MODE */ static void phy_monitor_thread_entry(void *parameter) { phy_linkchange(); #ifdef PHY_USING_INTERRUPT_MODE /* configuration intterrupt pin */ rt_pin_mode(PHY_INT_PIN, PIN_MODE_INPUT_PULLUP); rt_pin_attach_irq(PHY_INT_PIN, PIN_IRQ_MODE_FALLING, eth_phy_isr, (void *)"callbackargs"); rt_pin_irq_enable(PHY_INT_PIN, PIN_IRQ_ENABLE); /* enable phy interrupt */ HAL_ETH_WritePHYRegister(&EthHandle, PHY_ADDR, PHY_INTERRUPT_MASK_REG, PHY_INT_MASK); #if defined(PHY_INTERRUPT_CTRL_REG) HAL_ETH_WritePHYRegister(&EthHandle, PHY_ADDR, PHY_INTERRUPT_CTRL_REG, PHY_INTERRUPT_EN); #endif #else /* PHY_USING_INTERRUPT_MODE */ stm32_eth_device.poll_link_timer = rt_timer_create("phylnk", (void (*)(void*))phy_linkchange, NULL, RT_TICK_PER_SECOND, RT_TIMER_FLAG_PERIODIC); if (!stm32_eth_device.poll_link_timer || rt_timer_start(stm32_eth_device.poll_link_timer) != RT_EOK) { LOG_E("Start link change detection timer failed"); } #endif /* PHY_USING_INTERRUPT_MODE */ } /* Register the EMAC device */ static int rt_hw_stm32_eth_init(void) { rt_err_t state = RT_EOK; reset_pin = rt_pin_get(ETH_RESET_PIN); rt_pin_mode(reset_pin, PIN_MODE_OUTPUT); rt_pin_write(reset_pin, PIN_HIGH); stm32_eth_device.ETH_Speed = ETH_SPEED_100M; stm32_eth_device.ETH_Mode = ETH_FULLDUPLEX_MODE; /* OUI 00-80-E1 STMICROELECTRONICS. */ stm32_eth_device.dev_addr[0] = 0x00; stm32_eth_device.dev_addr[1] = 0x80; stm32_eth_device.dev_addr[2] = 0xE1; /* generate MAC addr from 96bit unique ID (only for test). */ stm32_eth_device.dev_addr[3] = *(rt_uint8_t *)(UID_BASE + 4); stm32_eth_device.dev_addr[4] = *(rt_uint8_t *)(UID_BASE + 2); stm32_eth_device.dev_addr[5] = *(rt_uint8_t *)(UID_BASE + 0); stm32_eth_device.parent.parent.init = rt_stm32_eth_init; stm32_eth_device.parent.parent.open = rt_stm32_eth_open; stm32_eth_device.parent.parent.close = rt_stm32_eth_close; stm32_eth_device.parent.parent.read = rt_stm32_eth_read; stm32_eth_device.parent.parent.write = rt_stm32_eth_write; stm32_eth_device.parent.parent.control = rt_stm32_eth_control; stm32_eth_device.parent.parent.user_data = RT_NULL; stm32_eth_device.parent.eth_rx = rt_stm32_eth_rx; stm32_eth_device.parent.eth_tx = rt_stm32_eth_tx; /* register eth device */ state = eth_device_init(&(stm32_eth_device.parent), "e0"); if (RT_EOK == state) { LOG_D("emac device init success"); } else { LOG_E("emac device init faild: %d", state); state = -RT_ERROR; } /* start phy monitor */ rt_thread_t tid; tid = rt_thread_create("phy", phy_monitor_thread_entry, RT_NULL, 1024, RT_THREAD_PRIORITY_MAX - 2, 2); if (tid != RT_NULL) { rt_thread_startup(tid); } else { state = -RT_ERROR; } return state; } INIT_DEVICE_EXPORT(rt_hw_stm32_eth_init); #endif /* BSP_USING_ETH_ARTPI */