/* * Copyright (c) 2022 OpenLuat & AirM2M * * Permission is hereby granted, free of charge, to any person obtaining a copy of * this software and associated documentation files (the "Software"), to deal in * the Software without restriction, including without limitation the rights to * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of * the Software, and to permit persons to whom the Software is furnished to do so, * subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "bsp_common.h" const uint8_t ByteToAsciiTable[16] = {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F'}; void LoopBuffer_Init(Loop_Buffer *Buf, void *Src, uint32_t MaxLen, uint32_t DataSize) { uint8_t *Data = (uint8_t *)Src; Buf->Data = Data; Buf->Len = 0; Buf->MaxLength = MaxLen; Buf->Offset = 0; Buf->DataSize = DataSize; } uint32_t LoopBuffer_Query(Loop_Buffer *Buf, void *Src, uint32_t Len) { uint32_t i, p; uint8_t *Data = (uint8_t *)Src; if (Buf->Len < Len) { Len = Buf->Len; } if (Buf->DataSize > 1) { for (i = 0, p = Buf->Offset; i < Len; i++, p++) { if (p >= Buf->MaxLength) { p -= Buf->MaxLength; } memcpy(Data + (i * Buf->DataSize), Buf->Data + (p * Buf->DataSize), Buf->DataSize); } } else { for (i = 0, p = Buf->Offset; i < Len; i++, p++) { if (p >= Buf->MaxLength) { p -= Buf->MaxLength; } Data[i] = Buf->Data[p]; } } return Len; } uint32_t LoopBuffer_Read(Loop_Buffer *Buf, void *Src, uint32_t Len) { uint32_t l; uint8_t *Data = (uint8_t *)Src; l = LoopBuffer_Query(Buf, Data, Len); Buf->Len -= l; Buf->Offset += l; if (Buf->Offset >= Buf->MaxLength) { Buf->Offset -= Buf->MaxLength; } if (!Buf->Len) { Buf->Offset = 0; } return l; } void LoopBuffer_Del(Loop_Buffer *Buf, uint32_t Len) { if (Buf->Len < Len) { Len = Buf->Len; } Buf->Len -= Len; Buf->Offset += Len; if (Buf->Offset >= Buf->MaxLength) { Buf->Offset -= Buf->MaxLength; } if (!Buf->Len) { Buf->Offset = 0; } } uint32_t LoopBuffer_Write(Loop_Buffer *Buf, void *Src, uint32_t Len) { uint32_t i, p, cut_off = 0; uint8_t *Data = (uint8_t *)Src; if (!Buf->Len && !Buf->Offset && (Len <= Buf->Len)) { memcpy(Buf->Data, Data, Len); Buf->Len = Len; return Len; } cut_off = Buf->MaxLength - Buf->Len; if (cut_off >= Len) { cut_off = 0; } else { cut_off = Len - cut_off; } if (Buf->DataSize > 1) { for (i = 0, p = Buf->Offset + Buf->Len; i < Len; i++, p++) { if (p >= Buf->MaxLength) { p -= Buf->MaxLength; } memcpy(Buf->Data + (p * Buf->DataSize), Data + (i * Buf->DataSize), Buf->DataSize); } } else { for (i = 0, p = Buf->Offset + Buf->Len; i < Len; i++, p++) { if (p >= Buf->MaxLength) { p -= Buf->MaxLength; } Buf->Data[p] = Data[i]; } } Buf->Offset += cut_off; if (Buf->Offset >= Buf->MaxLength) Buf->Offset -= Buf->MaxLength; Buf->Len += Len; if (Buf->Len > Buf->MaxLength) Buf->Len = Buf->MaxLength; return Len; } void Buffer_StaticInit(Buffer_Struct *Buf, void *Src, uint32_t MaxLen) { Buf->Data = Src; Buf->Pos = 0; Buf->MaxLen = MaxLen; } int32_t Buffer_StaticWrite(Buffer_Struct *Buf, void *Data, uint32_t Len) { if (!Len) { return -1; } if (!Buf) { return -1; } if ((Buf->Pos + Len) > Buf->MaxLen) { Len = Buf->MaxLen - Buf->Pos; } if (Len) { memcpy(&Buf->Data[Buf->Pos], Data, Len); } Buf->Pos += Len; return Len; } //void Buffer_Remove(Buffer_Struct *Buf, uint32_t Len) //{ // uint32_t RestLen; // uint32_t i; // if (!Buf) // return ; // if (!Buf->Data) // return ; // if (Len >= Buf->Pos) // { // Buf->Pos = 0; // return ; // } // RestLen = Buf->Pos - Len; // memmove(Buf->Data, Buf->Data + Len, RestLen); // Buf->Pos = RestLen; //} /***************************************************************************** * FUNCTION * command_parse_param() * DESCRIPTION * Parse AT command string to parameters * PARAMETERS * char* pStr * RETURNS * pCmdParam *****************************************************************************/ uint32_t CmdParseParam(int8_t* pStr, CmdParam *CP, int8_t Cut) { uint32_t paramStrLen = strlen((char *)pStr); uint32_t paramIndex = 0; uint32_t paramCharIndex = 0; uint32_t index = 0; while ((pStr[index] != '\r') && (index < paramStrLen) && (paramIndex < CP->param_max_num)) { if (pStr[index] == Cut) { /* Next param string */ paramCharIndex = 0; paramIndex++; } else { if (pStr[index] != '"') { if (paramCharIndex >= CP->param_max_len) return (0); /*Get each of command param char, the param char except char ' " '*/ CP->param_str[paramIndex * CP->param_max_len + paramCharIndex] = pStr[index]; paramCharIndex++; } } index++; } CP->param_num = paramIndex + 1; return (1); } __attribute__((weak)) uint8_t OS_CheckInIrq(void) { return __get_IPSR(); } __attribute__((weak)) void OS_BufferRemove(Buffer_Struct *Buf, uint32_t Len) { uint32_t RestLen; uint32_t i; if (!Buf) return ; if (!Buf->Data) return ; if (Len >= Buf->Pos) { Buf->Pos = 0; return ; } RestLen = Buf->Pos - Len; memmove(Buf->Data, Buf->Data + Len, RestLen); Buf->Pos = RestLen; } int32_t BSP_SetBit(uint8_t *Data, uint32_t Sn, uint8_t Value) { uint32_t Mask,Pos1,Pos2; Pos1 = Sn/8; Pos2 = Sn%8; Mask = ~(1 << Pos2); if (Value) { Value = (1 << Pos2); } Data[Pos1] = (Data[Pos1] & Mask) | Value; //DBG("%d %d %d %d", Sn, Pos1, Pos2, Value); return 0; } int32_t BSP_GetBit(uint8_t *Data, uint32_t Sn, uint8_t *Value) { uint32_t Mask,Pos1,Pos2; Pos1 = Sn/8; Pos2 = Sn%8; Mask = (1 << Pos2); if (Data[Pos1] & Mask) { *Value = 1; } else { *Value = 0; } return -1; } uint8_t BSP_TestBit(uint8_t *Data, uint32_t Sn) { uint32_t Mask,Pos1,Pos2; Pos1 = Sn/8; Pos2 = Sn%8; Mask = (1 << Pos2); if (Data[Pos1] & Mask) { return 1; } return 0; } uint8_t XorCheck(void *Src, uint32_t Len, uint8_t CheckStart) { uint8_t Check = CheckStart; uint8_t *Data = (uint8_t *)Src; uint32_t i; for (i = 0; i < Len; i++) { Check ^= Data[i]; } return Check; } uint8_t SumCheck(uint8_t *Data, uint32_t Len) { uint8_t Check = 0; uint32_t i; for (i = 0; i < Len; i++) { Check += Data[i]; } return Check; } uint8_t CRC8Cal(void *Data, uint16_t Len, uint8_t CRC8Last, uint8_t CRCRoot, uint8_t IsReverse) { uint16_t i; uint8_t CRC8 = CRC8Last; uint8_t wTemp = CRCRoot; uint8_t *Src = (uint8_t *)Data; if (IsReverse) { CRCRoot = 0; for (i = 0; i < 8; i++) { if (wTemp & (1 << (7 - i))) { CRCRoot |= 1 << i; } } while (Len--) { CRC8 ^= *Src++; for (i = 0; i < 8; i++) { if ((CRC8 & 0x01)) { CRC8 >>= 1; CRC8 ^= CRCRoot; } else { CRC8 >>= 1; } } } } else { while (Len--) { CRC8 ^= *Src++; for (i = 8; i > 0; --i) { if ((CRC8 & 0x80)) { CRC8 <<= 1; CRC8 ^= CRCRoot; } else { CRC8 <<= 1; } } } } return CRC8; } /************************************************************************/ /* CRC16 */ /************************************************************************/ uint16_t CRC16Cal(void *Data, uint16_t Len, uint16_t CRC16Last, uint16_t CRCRoot, uint8_t IsReverse) { uint16_t i; uint16_t CRC16 = CRC16Last; uint16_t wTemp = CRCRoot; uint8_t *Src = (uint8_t *)Data; if (IsReverse) { CRCRoot = 0; for (i = 0; i < 16; i++) { if (wTemp & (1 << (15 - i))) { CRCRoot |= 1 << i; } } while (Len--) { for (i = 0; i < 8; i++) { if ((CRC16 & 0x0001) != 0) { CRC16 >>= 1; CRC16 ^= CRCRoot; } else { CRC16 >>= 1; } if ((*Src&(1 << i)) != 0) { CRC16 ^= CRCRoot; } } Src++; } } else { while (Len--) { for (i = 8; i > 0; i--) { if ((CRC16 & 0x8000) != 0) { CRC16 <<= 1; CRC16 ^= CRCRoot; } else { CRC16 <<= 1; } if ((*Src&(1 << (i - 1))) != 0) { CRC16 ^= CRCRoot; } } Src++; } } return CRC16; } uint32_t AsciiToU32(uint8_t *Src, uint32_t Len) { uint32_t i = 0; uint32_t Temp = 0; for (i = 0; i < Len; i++) { if (Src[i]) { Temp *= 10; Temp += Src[i] - '0'; } else { break; } } return Temp; } /** * @brief 反转数据 * @param ref 需要反转的变量 * @param ch 反转长度,多少位 * @retval N反转后的数据 */ static LongInt Reflect(LongInt ref, uint8_t ch) { LongInt value = 0; LongInt i; for (i = 1; i < (LongInt)(ch + 1); i++) { if (ref & 1) value |= (LongInt)1 << (ch - i); ref >>= 1; } return value; } /** * @brief 建立CRC32的查询表 * @param Tab 表缓冲 * @param Gen CRC32根 * @retval None */ void CRC32_CreateTable(uint32_t *Tab, uint32_t Gen) { uint32_t crc; uint32_t i, j, temp, t1, t2, flag; if (Tab[1] != 0) return; for (i = 0; i < 256; i++) { temp = Reflect(i, 8); Tab[i] = temp << 24; for (j = 0; j < 8; j++) { flag = Tab[i] & 0x80000000; t1 = Tab[i] << 1; if (0 == flag) { t2 = 0; } else { t2 = Gen; } Tab[i] = t1 ^ t2; } crc = Tab[i]; Tab[i] = Reflect(crc, 32); } } /** * @brief 计算buffer的crc校验码 * @param CRC32_Table CRC32表 * @param Buf 缓冲 * @param Size 缓冲区长度 * @param CRC32 初始CRC32值 * @retval 计算后的CRC32 */ uint32_t CRC32_Cal(uint32_t *CRC32_Table, uint8_t *Buf, uint32_t Size, uint32_t CRC32Last) { uint32_t i; for (i = 0; i < Size; i++) { CRC32Last = CRC32_Table[(CRC32Last ^ Buf[i]) & 0xff] ^ (CRC32Last >> 8); } return CRC32Last; } /************************************************************************/ /*时间与时间戳转换,C语言实现 */ /************************************************************************/ /************************************************************************/ uint8_t IsLeapYear(uint32_t Year) { if ((Year % 400) == 0) return 1; if ((((Year % 4) == 0) && (Year % 100) != 0)) return 1; else return 0; } const uint32_t DayTable[2][12] = { { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }, { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 } }; //const uint32_t DayTable[2][12] = { { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }, { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 } }; LongInt UTC2Tamp(Date_UserDataStruct *Date, Time_UserDataStruct *Time) { LongInt DYear, DDay, DSec; uint32_t Year100; DYear = Date->Year - 1970; if (DYear) //1970年以后,1972是第一个闰年,1973年是第一年需要增加一天,2100年是非闰年 { DDay = DYear * 365 + ((DYear + 1) / 4) + DayTable[IsLeapYear(Date->Year)][Date->Mon - 1] + (Date->Day - 1); // if (IsLeapYear(Date->Year)) // { // DDay--; // } if (Date->Year >= 2100) { Year100 = Date->Year - 2100; DDay -= (1 + Year100 / 100); if (Date->Year >= 2400) { Year100 = Date->Year - 2400; DDay += 1 + Year100 / 400; } } } else { DDay = DayTable[IsLeapYear(Date->Year)][Date->Mon - 1] + (Date->Day - 1); } DSec = DDay * 86400 + Time->Hour * 3600 + Time->Min * 60 + Time->Sec; return DSec; } #define YEAR_1_DAY_BEFORE2000 365 #define YEAR_2_DAY_BEFORE2000 730 #define YEAR_3_DAY_BEFORE2000 1096 #define YEAR_1_DAY_AFTER2000 365 #define YEAR_2_DAY_AFTER2000 730 #define YEAR_3_DAY_AFTER2000 1095 #define YEAR_4_DAY 1461 #define YEAR_31_DAY 11323 #define YEAR_100_DAY 36524 #define YEAR_400_DAY 146097 uint32_t Tamp2UTC(LongInt Sec, Date_UserDataStruct *Date, Time_UserDataStruct *Time, uint32_t LastDDay) { uint32_t DYear,i, LeapFlag, Temp; uint32_t DDay; DDay = Sec / 86400; if (DDay != LastDDay) { DYear = 0; Time->Week = (4 + DDay) % 7; if (DDay >= YEAR_31_DAY) { DDay -= YEAR_31_DAY; DYear = 31; if (DDay >= YEAR_400_DAY) { Temp = DDay / YEAR_400_DAY; DYear += Temp * 400; DDay -= Temp * YEAR_400_DAY; } if (DDay >= YEAR_100_DAY) { Temp = DDay / YEAR_100_DAY; DYear += Temp * 100; DDay -= Temp * YEAR_100_DAY; } if (DDay >= YEAR_4_DAY) { Temp = DDay / YEAR_4_DAY; DYear += Temp * 4; DDay -= Temp * YEAR_4_DAY; } if (DDay >= YEAR_3_DAY_AFTER2000) { DYear += 3; DDay -= YEAR_3_DAY_AFTER2000; } else if (DDay >= YEAR_2_DAY_AFTER2000) { DYear += 2; DDay -= YEAR_2_DAY_AFTER2000; } else if (DDay >= YEAR_1_DAY_AFTER2000) { DYear += 1; DDay -= YEAR_1_DAY_AFTER2000; } } else { if (DDay >= YEAR_4_DAY) { Temp = DDay / YEAR_4_DAY; DYear += Temp * 4; DDay -= Temp * YEAR_4_DAY; } if (DDay >= YEAR_3_DAY_BEFORE2000) { DYear += 3; DDay -= YEAR_3_DAY_BEFORE2000; } else if (DDay >= YEAR_2_DAY_BEFORE2000) { DYear += 2; DDay -= YEAR_2_DAY_BEFORE2000; } else if (DDay >= YEAR_1_DAY_BEFORE2000) { DYear += 1; DDay -= YEAR_1_DAY_BEFORE2000; } } Date->Year = DYear + 1970; LeapFlag = IsLeapYear(Date->Year); Date->Mon = 12; for (i = 1; i < 12; i++) { if (DDay < DayTable[LeapFlag][i]) { Date->Mon = i; break; } } Date->Day = DDay - DayTable[LeapFlag][Date->Mon - 1] + 1; } Sec = Sec % 86400; Time->Hour = Sec / 3600; Sec = Sec % 3600; Time->Min = Sec / 60; Time->Sec = Sec % 60; return DDay; } /** * \brief get a byte (8bits) from a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer * \return the byte value */ uint8_t BytesGet8(const void *ptr) { const uint8_t *p = (const uint8_t *)ptr; return p[0]; } /** * \brief put a byte (8bits) to a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer * \param v the byte value */ void BytesPut8(void *ptr, uint8_t v) { uint8_t *p = (uint8_t *)ptr; p[0] = v; } /** * \brief get a big endian short (16bits) from a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \return the short value */ uint16_t BytesGetBe16(const void *ptr) { const uint8_t *p = (const uint8_t *)ptr; return (p[0] << 8) | p[1]; } /** * \brief put a big endian short (16bits) to a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \param v the short value */ void BytesPutBe16(void *ptr, uint16_t v) { uint8_t *p = (uint8_t *)ptr; p[0] = (v >> 8) & 0xff; p[1] = v & 0xff; } /** * \brief get a big endian word (32bits) from a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \return the word value */ uint32_t BytesGetBe32(const void *ptr) { const uint8_t *p = (const uint8_t *)ptr; return (p[0] << 24) | (p[1] << 16) | (p[2] << 8) | p[3]; } /** * \brief put a big endian word (32bits) to a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \param v the word value */ void BytesPutBe32(void *ptr, uint32_t v) { uint8_t *p = (uint8_t *)ptr; p[0] = (v >> 24) & 0xff; p[1] = (v >> 16) & 0xff; p[2] = (v >> 8) & 0xff; p[3] = v & 0xff; } /** * \brief get a little endian short (16bits) from a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \return the short value */ uint16_t BytesGetLe16(const void *ptr) { const uint8_t *p = (const uint8_t *)ptr; return p[0] | (p[1] << 8); } /** * \brief put a little endian short (16bits) to a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \param v the short value */ void BytesPutLe16(void *ptr, uint16_t v) { uint8_t *p = (uint8_t *)ptr; p[0] = v & 0xff; p[1] = (v >> 8) & 0xff; } /** * \brief get a little endian word (32bits) from a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \return the word value */ uint32_t BytesGetLe32(const void *ptr) { const uint8_t *p = (const uint8_t *)ptr; return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24); } /** * \brief put a little endian word (32bits) to a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \param v the word value */ void BytesPutLe32(void *ptr, uint32_t v) { uint8_t *p = (uint8_t *)ptr; p[0] = v & 0xff; p[1] = (v >> 8) & 0xff; p[2] = (v >> 16) & 0xff; p[3] = (v >> 24) & 0xff; } /** * \brief get a little endian long long (64bits) from a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \return the long long value */ uint64_t BytesGetLe64(const void *ptr) { const uint8_t *p = (const uint8_t *)ptr; return BytesGetLe32(p) | ((uint64_t)BytesGetLe32(p + 4) << 32); } /** * \brief put a little endian long long (64bits) to a pointer * * Caller should ensure parameters are valid. * * \param ptr the pointer, may be unaligned * \param v the long long value */ void BytesPutLe64(void *ptr, uint64_t v) { uint8_t *p = (uint8_t *)ptr; BytesPutLe32(p, v & 0xffffffff); BytesPutLe32(p + 4, (v >> 32) & 0xffffffff); } uint8_t BytesGet8FromBuf(Buffer_Struct *Buf) { Buf->Pos++; return Buf->Data[Buf->Pos - 1]; } void BytesPut8ToBuf(Buffer_Struct *Buf, uint8_t v) { Buf->Data[Buf->Pos] = v; Buf->Pos++; } uint16_t BytesGetBe16FromBuf(Buffer_Struct *Buf) { Buf->Pos += 2; return (Buf->Data[Buf->Pos - 2] << 8) | Buf->Data[Buf->Pos - 1]; } void BytesPutBe16ToBuf(Buffer_Struct *Buf, uint16_t v) { Buf->Data[Buf->Pos] = (v >> 8) & 0xff; Buf->Data[Buf->Pos + 1] = v & 0xff; Buf->Pos += 2; } uint32_t BytesGetBe32FromBuf(Buffer_Struct *Buf) { Buf->Pos += 4; return (Buf->Data[Buf->Pos - 4] << 24) | (Buf->Data[Buf->Pos - 3] << 16) | (Buf->Data[Buf->Pos - 2] << 8) | Buf->Data[Buf->Pos - 1]; } void BytesPutBe32ToBuf(Buffer_Struct *Buf, uint32_t v) { Buf->Data[Buf->Pos] = (v >> 24) & 0xff; Buf->Data[Buf->Pos + 1] = (v >> 16) & 0xff; Buf->Data[Buf->Pos + 2] = (v >> 8) & 0xff; Buf->Data[Buf->Pos + 3] = v & 0xff; Buf->Pos += 4; } uint16_t BytesGetLe16FromBuf(Buffer_Struct *Buf) { Buf->Pos += 2; return Buf->Data[Buf->Pos - 2] | (Buf->Data[Buf->Pos - 1] << 8); } void BytesPutLe16ToBuf(Buffer_Struct *Buf, uint16_t v) { Buf->Data[Buf->Pos] = v & 0xff; Buf->Data[Buf->Pos + 1] = (v >> 8) & 0xff; Buf->Pos+= 2; } uint32_t BytesGetLe32FromBuf(Buffer_Struct *Buf) { Buf->Pos += 4; return Buf->Data[Buf->Pos - 4] | (Buf->Data[Buf->Pos - 3] << 8) | (Buf->Data[Buf->Pos - 2] << 16) | (Buf->Data[Buf->Pos - 1] << 24); } void BytesPutLe32ToBuf(Buffer_Struct *Buf, uint32_t v) { Buf->Data[Buf->Pos] = v & 0xff; Buf->Data[Buf->Pos + 1] = (v >> 8) & 0xff; Buf->Data[Buf->Pos + 2] = (v >> 16) & 0xff; Buf->Data[Buf->Pos + 3] = (v >> 24) & 0xff; Buf->Pos += 4; } uint64_t BytesGetLe64FromBuf(Buffer_Struct *Buf) { uint64_t Temp = BytesGetLe32FromBuf(Buf); return Temp | ((uint64_t)BytesGetLe32FromBuf(Buf) << 32); } void BytesPutLe64ToBuf(Buffer_Struct *Buf, uint64_t v) { BytesPutLe32ToBuf(Buf, v & 0xffffffff); BytesPutLe32ToBuf(Buf, (v >> 32) & 0xffffffff); } float BytesGetFloatFromBuf(Buffer_Struct *Buf) { float Temp; Buf->Pos += 4; memcpy(&Temp, &Buf->Data[Buf->Pos - 4], 4); return Temp; } void BytesPutFloatToBuf(Buffer_Struct *Buf, float v) { memcpy(&Buf->Data[Buf->Pos], &v, 4); Buf->Pos += 4; } double BytesGetDoubleFromBuf(Buffer_Struct *Buf) { double Temp; Buf->Pos += 8; memcpy(&Temp, &Buf->Data[Buf->Pos - 8], 8); return Temp; } void BytesPutDoubleToBuf(Buffer_Struct *Buf, double v) { memcpy(&Buf->Data[Buf->Pos], &v, 8); Buf->Pos += 8; } void BytesGetMemoryFromBuf(Buffer_Struct *Buf, uint8_t *Data, uint32_t Len) { memcpy(Data, &Buf->Data[Buf->Pos], Len); Buf->Pos += Len; } /* * 转义打包 * 标识Flag,即包头包尾加入Flag * 数据中遇到Flag -> Code F1 * 数据中遇到Code -> Code F2 */ uint32_t TransferPack(uint8_t Flag, uint8_t Code, uint8_t F1, uint8_t F2, uint8_t *InBuf, uint32_t Len, uint8_t *OutBuf) { uint32_t TxLen = 0; uint32_t i; OutBuf[0] = Flag; TxLen = 1; for (i = 0; i < Len; i++) { if (InBuf[i] == Flag) { OutBuf[TxLen++] = Code; OutBuf[TxLen++] = F1; } else if (InBuf[i] == Code) { OutBuf[TxLen++] = Code; OutBuf[TxLen++] = F2; } else { OutBuf[TxLen++] = InBuf[i]; } } OutBuf[TxLen++] = Flag; return TxLen; } /* * 转义解包 * 标识Flag,即包头包尾加入Flag * 数据中遇到Code F1 -> Flag * 数据中遇到Code F2 -> Code * 数据中遇到Flag 出错返回0 */ uint32_t TransferUnpack(uint8_t Flag, uint8_t Code, uint8_t F1, uint8_t F2, uint8_t *InBuf, uint32_t Len, uint8_t *OutBuf) { uint32_t RxLen = 0; uint32_t i = 0; while (i < Len) { if (InBuf[i] == Code) { if (InBuf[i+1] == F1) { OutBuf[RxLen++] = Flag; } else if (InBuf[i+1] == F2) { OutBuf[RxLen++] = Code; } else { return 0; } i += 2; } else if (InBuf[i] == Flag) { return 0; } else { OutBuf[RxLen++] = InBuf[i++]; } } return RxLen; } /* * Insert a new entry between two known consecutive entries. * * This is only for internal llist manipulation where we know * the prev/next entries already! */ void __llist_add(llist_head *p, llist_head *prev, llist_head *next) { next->prev = p; p->next = next; p->prev = prev; prev->next = p; } /** * llist_add - add a new entry * @new: new entry to be added * @head: llist head to add it after * * Insert a new entry after the specified head. * This is good for implementing stacks. */ void llist_add(llist_head *p, llist_head *head) { __llist_add(p, head, head->next); } /** * llist_add_tail - add a new entry * @new: new entry to be added * @head: llist head to add it before * * Insert a new entry before the specified head. * This is useful for implementing queues. */ void llist_add_tail(llist_head *p, llist_head *head) { __llist_add(p, head->prev, head); } /* * Delete a llist entry by making the prev/next entries * point to each other. * * This is only for internal llist manipulation where we know * the prev/next entries already! */ void __llist_del(llist_head * prev, llist_head * next) { next->prev = prev; prev->next = next; } /** * llist_del - deletes entry from llist. * @entry: the element to delete from the llist. * Note: llist_empty on entry does not return true after this, the entry is * in an undefined state. */ void llist_del(llist_head *entry) { if (entry->prev && entry->next) { __llist_del(entry->prev, entry->next); } entry->next = LLIST_POISON1; entry->prev = LLIST_POISON2; } /** * llist_del_init - deletes entry from llist and reinitialize it. * @entry: the element to delete from the llist. */ void llist_del_init(llist_head *entry) { __llist_del(entry->prev, entry->next); INIT_LLIST_HEAD(entry); } /** * llist_move - delete from one llist and add as another's head * @llist: the entry to move * @head: the head that will precede our entry */ void llist_move(llist_head *llist, llist_head *head) { __llist_del(llist->prev, llist->next); llist_add(llist, head); } /** * llist_move_tail - delete from one llist and add as another's tail * @llist: the entry to move * @head: the head that will follow our entry */ void llist_move_tail(llist_head *llist, llist_head *head) { __llist_del(llist->prev, llist->next); llist_add_tail(llist, head); } void *llist_traversal(llist_head *head, CBFuncEx_t cb, void *pData) { llist_head *node = head->next; llist_head *del; int32_t result; while (!llist_empty(head) && (node != head)) { result = cb((void *)node, pData); if (result > 0) { return node; } else { del = node; node = node->next; if (result < 0) { llist_del(del); cb((void *)del, NULL); } } } return NULL; } /** * llist_empty - tests whether a llist is empty * @head: the llist to test. */ int llist_empty(const llist_head *head) { return head->next == head; } uint32_t llist_num(const llist_head *head) { llist_head *node = head->next; uint32_t num = 0; if (!node) return num; while(node != head) { num++; node = node->next; } return num; }