/**
******************************************************************************
* @file stm32f10x_can.c
* @author MCD Application Team
* @version V3.1.0
* @date 06/19/2009
* @brief This file provides all the CAN firmware functions.
******************************************************************************
* @copy
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
*
© COPYRIGHT 2009 STMicroelectronics
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x_can.h"
#include "stm32f10x_rcc.h"
/** @addtogroup STM32F10x_StdPeriph_Driver
* @{
*/
/** @defgroup CAN
* @brief CAN driver modules
* @{
*/
/** @defgroup CAN_Private_TypesDefinitions
* @{
*/
/**
* @}
*/
/** @defgroup CAN_Private_Defines
* @{
*/
/* CAN Master Control Register bits */
#define MCR_INRQ ((uint32_t)0x00000001) /* Initialization request */
#define MCR_SLEEP ((uint32_t)0x00000002) /* Sleep mode request */
#define MCR_TXFP ((uint32_t)0x00000004) /* Transmit FIFO priority */
#define MCR_RFLM ((uint32_t)0x00000008) /* Receive FIFO locked mode */
#define MCR_NART ((uint32_t)0x00000010) /* No automatic retransmission */
#define MCR_AWUM ((uint32_t)0x00000020) /* Automatic wake up mode */
#define MCR_ABOM ((uint32_t)0x00000040) /* Automatic bus-off management */
#define MCR_TTCM ((uint32_t)0x00000080) /* time triggered communication */
#define MCR_RESET ((uint32_t)0x00008000) /* time triggered communication */
#define MCR_DBF ((uint32_t)0x00010000) /* software master reset */
/* CAN Master Status Register bits */
#define MSR_INAK ((uint32_t)0x00000001) /* Initialization acknowledge */
#define MSR_WKUI ((uint32_t)0x00000008) /* Wake-up interrupt */
#define MSR_SLAKI ((uint32_t)0x00000010) /* Sleep acknowledge interrupt */
/* CAN Transmit Status Register bits */
#define TSR_RQCP0 ((uint32_t)0x00000001) /* Request completed mailbox0 */
#define TSR_TXOK0 ((uint32_t)0x00000002) /* Transmission OK of mailbox0 */
#define TSR_ABRQ0 ((uint32_t)0x00000080) /* Abort request for mailbox0 */
#define TSR_RQCP1 ((uint32_t)0x00000100) /* Request completed mailbox1 */
#define TSR_TXOK1 ((uint32_t)0x00000200) /* Transmission OK of mailbox1 */
#define TSR_ABRQ1 ((uint32_t)0x00008000) /* Abort request for mailbox1 */
#define TSR_RQCP2 ((uint32_t)0x00010000) /* Request completed mailbox2 */
#define TSR_TXOK2 ((uint32_t)0x00020000) /* Transmission OK of mailbox2 */
#define TSR_ABRQ2 ((uint32_t)0x00800000) /* Abort request for mailbox2 */
#define TSR_TME0 ((uint32_t)0x04000000) /* Transmit mailbox 0 empty */
#define TSR_TME1 ((uint32_t)0x08000000) /* Transmit mailbox 1 empty */
#define TSR_TME2 ((uint32_t)0x10000000) /* Transmit mailbox 2 empty */
/* CAN Receive FIFO 0 Register bits */
#define RF0R_FULL0 ((uint32_t)0x00000008) /* FIFO 0 full */
#define RF0R_FOVR0 ((uint32_t)0x00000010) /* FIFO 0 overrun */
#define RF0R_RFOM0 ((uint32_t)0x00000020) /* Release FIFO 0 output mailbox */
/* CAN Receive FIFO 1 Register bits */
#define RF1R_FULL1 ((uint32_t)0x00000008) /* FIFO 1 full */
#define RF1R_FOVR1 ((uint32_t)0x00000010) /* FIFO 1 overrun */
#define RF1R_RFOM1 ((uint32_t)0x00000020) /* Release FIFO 1 output mailbox */
/* CAN Error Status Register bits */
#define ESR_EWGF ((uint32_t)0x00000001) /* Error warning flag */
#define ESR_EPVF ((uint32_t)0x00000002) /* Error passive flag */
#define ESR_BOFF ((uint32_t)0x00000004) /* Bus-off flag */
/* CAN Mailbox Transmit Request */
#define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */
/* CAN Filter Master Register bits */
#define FMR_FINIT ((uint32_t)0x00000001) /* Filter init mode */
/* Time out for INAK bit */
#define INAK_TimeOut ((uint32_t)0x0000FFFF)
/* Time out for SLAK bit */
#define SLAK_TimeOut ((uint32_t)0x0000FFFF)
/**
* @}
*/
/** @defgroup CAN_Private_Macros
* @{
*/
/**
* @}
*/
/** @defgroup CAN_Private_Variables
* @{
*/
/**
* @}
*/
/** @defgroup CAN_Private_FunctionPrototypes
* @{
*/
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit);
/**
* @}
*/
/** @defgroup CAN_Private_Functions
* @{
*/
/**
* @brief Deinitializes the CAN peripheral registers to their default reset values.
* @param CANx: where x can be 1 or 2 to select the CAN peripheral.
* @retval None.
*/
void CAN_DeInit(CAN_TypeDef* CANx)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
if (CANx == CAN1)
{
/* Enable CAN1 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, ENABLE);
/* Release CAN1 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN1, DISABLE);
}
else
{
/* Enable CAN2 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, ENABLE);
/* Release CAN2 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_CAN2, DISABLE);
}
}
/**
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_InitStruct.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure that
* contains the configuration information for the CAN peripheral.
* @retval Constant indicates initialization succeed which will be
* CANINITFAILED or CANINITOK.
*/
uint8_t CAN_Init(CAN_TypeDef* CANx, CAN_InitTypeDef* CAN_InitStruct)
{
uint8_t InitStatus = CANINITFAILED;
uint32_t wait_ack = 0x00000000;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TTCM));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_ABOM));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_AWUM));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_NART));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_RFLM));
assert_param(IS_FUNCTIONAL_STATE(CAN_InitStruct->CAN_TXFP));
assert_param(IS_CAN_MODE(CAN_InitStruct->CAN_Mode));
assert_param(IS_CAN_SJW(CAN_InitStruct->CAN_SJW));
assert_param(IS_CAN_BS1(CAN_InitStruct->CAN_BS1));
assert_param(IS_CAN_BS2(CAN_InitStruct->CAN_BS2));
assert_param(IS_CAN_PRESCALER(CAN_InitStruct->CAN_Prescaler));
/* exit from sleep mode */
CANx->MCR &= ~MCR_SLEEP;
/* Request initialisation */
CANx->MCR |= MCR_INRQ ;
/* Wait the acknowledge */
while (((CANx->MSR & MSR_INAK) != MSR_INAK) && (wait_ack != INAK_TimeOut))
{
wait_ack++;
}
/* ...and check acknowledged */
if ((CANx->MSR & MSR_INAK) != MSR_INAK)
{
InitStatus = CANINITFAILED;
}
else
{
/* Set the time triggered communication mode */
if (CAN_InitStruct->CAN_TTCM == ENABLE)
{
CANx->MCR |= MCR_TTCM;
}
else
{
CANx->MCR &= ~MCR_TTCM;
}
/* Set the automatic bus-off management */
if (CAN_InitStruct->CAN_ABOM == ENABLE)
{
CANx->MCR |= MCR_ABOM;
}
else
{
CANx->MCR &= ~MCR_ABOM;
}
/* Set the automatic wake-up mode */
if (CAN_InitStruct->CAN_AWUM == ENABLE)
{
CANx->MCR |= MCR_AWUM;
}
else
{
CANx->MCR &= ~MCR_AWUM;
}
/* Set the no automatic retransmission */
if (CAN_InitStruct->CAN_NART == ENABLE)
{
CANx->MCR |= MCR_NART;
}
else
{
CANx->MCR &= ~MCR_NART;
}
/* Set the receive FIFO locked mode */
if (CAN_InitStruct->CAN_RFLM == ENABLE)
{
CANx->MCR |= MCR_RFLM;
}
else
{
CANx->MCR &= ~MCR_RFLM;
}
/* Set the transmit FIFO priority */
if (CAN_InitStruct->CAN_TXFP == ENABLE)
{
CANx->MCR |= MCR_TXFP;
}
else
{
CANx->MCR &= ~MCR_TXFP;
}
/* Set the bit timing register */
CANx->BTR = (uint32_t)((uint32_t)CAN_InitStruct->CAN_Mode << 30) | ((uint32_t)CAN_InitStruct->CAN_SJW << 24) |
((uint32_t)CAN_InitStruct->CAN_BS1 << 16) | ((uint32_t)CAN_InitStruct->CAN_BS2 << 20) |
((uint32_t)CAN_InitStruct->CAN_Prescaler - 1);
/* Request leave initialisation */
CANx->MCR &= ~MCR_INRQ;
/* Wait the acknowledge */
wait_ack = 0x00;
while (((CANx->MSR & MSR_INAK) == MSR_INAK) && (wait_ack != INAK_TimeOut))
{
wait_ack++;
}
/* ...and check acknowledged */
if ((CANx->MSR & MSR_INAK) == MSR_INAK)
{
InitStatus = CANINITFAILED;
}
else
{
InitStatus = CANINITOK ;
}
}
/* At this step, return the status of initialization */
return InitStatus;
}
/**
* @brief Initializes the CAN peripheral according to the specified
* parameters in the CAN_FilterInitStruct.
* @param CAN_FilterInitStruct: pointer to a CAN_FilterInitTypeDef
* structure that contains the configuration information.
* @retval None.
*/
void CAN_FilterInit(CAN_FilterInitTypeDef* CAN_FilterInitStruct)
{
uint32_t filter_number_bit_pos = 0;
/* Check the parameters */
assert_param(IS_CAN_FILTER_NUMBER(CAN_FilterInitStruct->CAN_FilterNumber));
assert_param(IS_CAN_FILTER_MODE(CAN_FilterInitStruct->CAN_FilterMode));
assert_param(IS_CAN_FILTER_SCALE(CAN_FilterInitStruct->CAN_FilterScale));
assert_param(IS_CAN_FILTER_FIFO(CAN_FilterInitStruct->CAN_FilterFIFOAssignment));
assert_param(IS_FUNCTIONAL_STATE(CAN_FilterInitStruct->CAN_FilterActivation));
filter_number_bit_pos = ((uint32_t)0x00000001) << CAN_FilterInitStruct->CAN_FilterNumber;
/* Initialisation mode for the filter */
CAN1->FMR |= FMR_FINIT;
/* Filter Deactivation */
CAN1->FA1R &= ~(uint32_t)filter_number_bit_pos;
/* Filter Scale */
if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_16bit)
{
/* 16-bit scale for the filter */
CAN1->FS1R &= ~(uint32_t)filter_number_bit_pos;
/* First 16-bit identifier and First 16-bit mask */
/* Or First 16-bit identifier and Second 16-bit identifier */
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
/* Second 16-bit identifier and Second 16-bit mask */
/* Or Third 16-bit identifier and Fourth 16-bit identifier */
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh);
}
if (CAN_FilterInitStruct->CAN_FilterScale == CAN_FilterScale_32bit)
{
/* 32-bit scale for the filter */
CAN1->FS1R |= filter_number_bit_pos;
/* 32-bit identifier or First 32-bit identifier */
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR1 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterIdLow);
/* 32-bit mask or Second 32-bit identifier */
CAN1->sFilterRegister[CAN_FilterInitStruct->CAN_FilterNumber].FR2 =
((0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdHigh) << 16) |
(0x0000FFFF & (uint32_t)CAN_FilterInitStruct->CAN_FilterMaskIdLow);
}
/* Filter Mode */
if (CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdMask)
{
/*Id/Mask mode for the filter*/
CAN1->FM1R &= ~(uint32_t)filter_number_bit_pos;
}
else /* CAN_FilterInitStruct->CAN_FilterMode == CAN_FilterMode_IdList */
{
/*Identifier list mode for the filter*/
CAN1->FM1R |= (uint32_t)filter_number_bit_pos;
}
/* Filter FIFO assignment */
if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_FilterFIFO0)
{
/* FIFO 0 assignation for the filter */
CAN1->FFA1R &= ~(uint32_t)filter_number_bit_pos;
}
if (CAN_FilterInitStruct->CAN_FilterFIFOAssignment == CAN_FilterFIFO1)
{
/* FIFO 1 assignation for the filter */
CAN1->FFA1R |= (uint32_t)filter_number_bit_pos;
}
/* Filter activation */
if (CAN_FilterInitStruct->CAN_FilterActivation == ENABLE)
{
CAN1->FA1R |= filter_number_bit_pos;
}
/* Leave the initialisation mode for the filter */
CAN1->FMR &= ~FMR_FINIT;
}
/**
* @brief Fills each CAN_InitStruct member with its default value.
* @param CAN_InitStruct: pointer to a CAN_InitTypeDef structure which
* will be initialized.
* @retval None.
*/
void CAN_StructInit(CAN_InitTypeDef* CAN_InitStruct)
{
/* Reset CAN init structure parameters values */
/* Initialize the time triggered communication mode */
CAN_InitStruct->CAN_TTCM = DISABLE;
/* Initialize the automatic bus-off management */
CAN_InitStruct->CAN_ABOM = DISABLE;
/* Initialize the automatic wake-up mode */
CAN_InitStruct->CAN_AWUM = DISABLE;
/* Initialize the no automatic retransmission */
CAN_InitStruct->CAN_NART = DISABLE;
/* Initialize the receive FIFO locked mode */
CAN_InitStruct->CAN_RFLM = DISABLE;
/* Initialize the transmit FIFO priority */
CAN_InitStruct->CAN_TXFP = DISABLE;
/* Initialize the CAN_Mode member */
CAN_InitStruct->CAN_Mode = CAN_Mode_Normal;
/* Initialize the CAN_SJW member */
CAN_InitStruct->CAN_SJW = CAN_SJW_1tq;
/* Initialize the CAN_BS1 member */
CAN_InitStruct->CAN_BS1 = CAN_BS1_4tq;
/* Initialize the CAN_BS2 member */
CAN_InitStruct->CAN_BS2 = CAN_BS2_3tq;
/* Initialize the CAN_Prescaler member */
CAN_InitStruct->CAN_Prescaler = 1;
}
/**
* @brief Select the start bank filter for slave CAN.
* @note This function applies only to STM32 Connectivity line devices.
* @param CAN_BankNumber: Select the start slave bank filter from 1..27.
* @retval None.
*/
void CAN_SlaveStartBank(uint8_t CAN_BankNumber)
{
/* Check the parameters */
assert_param(IS_CAN_BANKNUMBER(CAN_BankNumber));
/* enter Initialisation mode for the filter */
CAN1->FMR |= FMR_FINIT;
/* Select the start slave bank */
CAN1->FMR &= (uint32_t)0xFFFFC0F1 ;
CAN1->FMR |= (uint32_t)(CAN_BankNumber)<<8;
/* Leave Initialisation mode for the filter */
CAN1->FMR &= ~FMR_FINIT;
}
/**
* @brief Enables or disables the specified CAN interrupts.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_IT: specifies the CAN interrupt sources to be enabled or disabled.
* This parameter can be: CAN_IT_TME, CAN_IT_FMP0, CAN_IT_FF0,
* CAN_IT_FOV0, CAN_IT_FMP1, CAN_IT_FF1,
* CAN_IT_FOV1, CAN_IT_EWG, CAN_IT_EPV,
* CAN_IT_LEC, CAN_IT_ERR, CAN_IT_WKU or
* CAN_IT_SLK.
* @param NewState: new state of the CAN interrupts.
* This parameter can be: ENABLE or DISABLE.
* @retval None.
*/
void CAN_ITConfig(CAN_TypeDef* CANx, uint32_t CAN_IT, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_ITConfig(CAN_IT));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable the selected CAN interrupt */
CANx->IER |= CAN_IT;
}
else
{
/* Disable the selected CAN interrupt */
CANx->IER &= ~CAN_IT;
}
}
/**
* @brief Initiates the transmission of a message.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param TxMessage: pointer to a structure which contains CAN Id, CAN
* DLC and CAN datas.
* @retval The number of the mailbox that is used for transmission
* or CAN_NO_MB if there is no empty mailbox.
*/
uint8_t CAN_Transmit(CAN_TypeDef* CANx, CanTxMsg* TxMessage)
{
uint8_t transmit_mailbox = 0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_IDTYPE(TxMessage->IDE));
assert_param(IS_CAN_RTR(TxMessage->RTR));
assert_param(IS_CAN_DLC(TxMessage->DLC));
/* Select one empty transmit mailbox */
if ((CANx->TSR&TSR_TME0) == TSR_TME0)
{
transmit_mailbox = 0;
}
else if ((CANx->TSR&TSR_TME1) == TSR_TME1)
{
transmit_mailbox = 1;
}
else if ((CANx->TSR&TSR_TME2) == TSR_TME2)
{
transmit_mailbox = 2;
}
else
{
transmit_mailbox = CAN_NO_MB;
}
if (transmit_mailbox != CAN_NO_MB)
{
/* Set up the Id */
CANx->sTxMailBox[transmit_mailbox].TIR &= TMIDxR_TXRQ;
if (TxMessage->IDE == CAN_ID_STD)
{
assert_param(IS_CAN_STDID(TxMessage->StdId));
CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->StdId << 21) | TxMessage->RTR);
}
else
{
assert_param(IS_CAN_EXTID(TxMessage->ExtId));
CANx->sTxMailBox[transmit_mailbox].TIR |= ((TxMessage->ExtId<<3) | TxMessage->IDE |
TxMessage->RTR);
}
/* Set up the DLC */
TxMessage->DLC &= (uint8_t)0x0000000F;
CANx->sTxMailBox[transmit_mailbox].TDTR &= (uint32_t)0xFFFFFFF0;
CANx->sTxMailBox[transmit_mailbox].TDTR |= TxMessage->DLC;
/* Set up the data field */
CANx->sTxMailBox[transmit_mailbox].TDLR = (((uint32_t)TxMessage->Data[3] << 24) |
((uint32_t)TxMessage->Data[2] << 16) |
((uint32_t)TxMessage->Data[1] << 8) |
((uint32_t)TxMessage->Data[0]));
CANx->sTxMailBox[transmit_mailbox].TDHR = (((uint32_t)TxMessage->Data[7] << 24) |
((uint32_t)TxMessage->Data[6] << 16) |
((uint32_t)TxMessage->Data[5] << 8) |
((uint32_t)TxMessage->Data[4]));
/* Request transmission */
CANx->sTxMailBox[transmit_mailbox].TIR |= TMIDxR_TXRQ;
}
return transmit_mailbox;
}
/**
* @brief Checks the transmission of a message.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param TransmitMailbox: the number of the mailbox that is used for transmission.
* @retval CANTXOK if the CAN driver transmits the message, CANTXFAILED in an other case.
*/
uint8_t CAN_TransmitStatus(CAN_TypeDef* CANx, uint8_t TransmitMailbox)
{
/* RQCP, TXOK and TME bits */
uint8_t state = 0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_TRANSMITMAILBOX(TransmitMailbox));
switch (TransmitMailbox)
{
case (0): state |= (uint8_t)((CANx->TSR & TSR_RQCP0) << 2);
state |= (uint8_t)((CANx->TSR & TSR_TXOK0) >> 0);
state |= (uint8_t)((CANx->TSR & TSR_TME0) >> 26);
break;
case (1): state |= (uint8_t)((CANx->TSR & TSR_RQCP1) >> 6);
state |= (uint8_t)((CANx->TSR & TSR_TXOK1) >> 8);
state |= (uint8_t)((CANx->TSR & TSR_TME1) >> 27);
break;
case (2): state |= (uint8_t)((CANx->TSR & TSR_RQCP2) >> 14);
state |= (uint8_t)((CANx->TSR & TSR_TXOK2) >> 16);
state |= (uint8_t)((CANx->TSR & TSR_TME2) >> 28);
break;
default:
state = CANTXFAILED;
break;
}
switch (state)
{
/* transmit pending */
case (0x0): state = CANTXPENDING;
break;
/* transmit failed */
case (0x5): state = CANTXFAILED;
break;
/* transmit succedeed */
case (0x7): state = CANTXOK;
break;
default:
state = CANTXFAILED;
break;
}
return state;
}
/**
* @brief Cancels a transmit request.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param Mailbox: Mailbox number.
* @retval None.
*/
void CAN_CancelTransmit(CAN_TypeDef* CANx, uint8_t Mailbox)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_TRANSMITMAILBOX(Mailbox));
/* abort transmission */
switch (Mailbox)
{
case (0): CANx->TSR |= TSR_ABRQ0;
break;
case (1): CANx->TSR |= TSR_ABRQ1;
break;
case (2): CANx->TSR |= TSR_ABRQ2;
break;
default:
break;
}
}
/**
* @brief Releases a FIFO.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param FIFONumber: FIFO to release, CAN_FIFO0 or CAN_FIFO1.
* @retval None.
*/
void CAN_FIFORelease(CAN_TypeDef* CANx, uint8_t FIFONumber)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_FIFO(FIFONumber));
/* Release FIFO0 */
if (FIFONumber == CAN_FIFO0)
{
CANx->RF0R = RF0R_RFOM0;
}
/* Release FIFO1 */
else /* FIFONumber == CAN_FIFO1 */
{
CANx->RF1R = RF1R_RFOM1;
}
}
/**
* @brief Returns the number of pending messages.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
* @retval NbMessage which is the number of pending message.
*/
uint8_t CAN_MessagePending(CAN_TypeDef* CANx, uint8_t FIFONumber)
{
uint8_t message_pending=0;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_FIFO(FIFONumber));
if (FIFONumber == CAN_FIFO0)
{
message_pending = (uint8_t)(CANx->RF0R&(uint32_t)0x03);
}
else if (FIFONumber == CAN_FIFO1)
{
message_pending = (uint8_t)(CANx->RF1R&(uint32_t)0x03);
}
else
{
message_pending = 0;
}
return message_pending;
}
/**
* @brief Receives a message.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param FIFONumber: Receive FIFO number, CAN_FIFO0 or CAN_FIFO1.
* @param RxMessage: pointer to a structure receive message which
* contains CAN Id, CAN DLC, CAN datas and FMI number.
* @retval None.
*/
void CAN_Receive(CAN_TypeDef* CANx, uint8_t FIFONumber, CanRxMsg* RxMessage)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_FIFO(FIFONumber));
/* Get the Id */
RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONumber].RIR;
if (RxMessage->IDE == CAN_ID_STD)
{
RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 21);
}
else
{
RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONumber].RIR >> 3);
}
RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONumber].RIR;
/* Get the DLC */
RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONumber].RDTR;
/* Get the FMI */
RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDTR >> 8);
/* Get the data field */
RxMessage->Data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDLR;
RxMessage->Data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 8);
RxMessage->Data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 16);
RxMessage->Data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDLR >> 24);
RxMessage->Data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONumber].RDHR;
RxMessage->Data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 8);
RxMessage->Data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 16);
RxMessage->Data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONumber].RDHR >> 24);
/* Release the FIFO */
CAN_FIFORelease(CANx, FIFONumber);
}
/**
* @brief Enables or disables the DBG Freeze for CAN.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param NewState: new state of the CAN peripheral.
* This parameter can be: ENABLE or DISABLE.
* @retval None.
*/
void CAN_DBGFreeze(CAN_TypeDef* CANx, FunctionalState NewState)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_FUNCTIONAL_STATE(NewState));
if (NewState != DISABLE)
{
/* Enable Debug Freeze */
CANx->MCR |= MCR_DBF;
}
else
{
/* Disable Debug Freeze */
CANx->MCR &= ~MCR_DBF;
}
}
/**
* @brief Enters the low power mode.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @retval CANSLEEPOK if sleep entered, CANSLEEPFAILED in an other case.
*/
uint8_t CAN_Sleep(CAN_TypeDef* CANx)
{
uint8_t sleepstatus = CANSLEEPFAILED;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
/* Request Sleep mode */
CANx->MCR = (((CANx->MCR) & (uint32_t)(~MCR_INRQ)) | MCR_SLEEP);
/* Sleep mode status */
if ((CANx->MSR & (CAN_MSR_SLAK|CAN_MSR_INAK)) == CAN_MSR_SLAK)
{
/* Sleep mode not entered */
sleepstatus = CANSLEEPOK;
}
/* At this step, sleep mode status */
return (uint8_t)sleepstatus;
}
/**
* @brief Wakes the CAN up.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @retval CANWAKEUPOK if sleep mode left, CANWAKEUPFAILED in an other case.
*/
uint8_t CAN_WakeUp(CAN_TypeDef* CANx)
{
uint32_t wait_slak = SLAK_TimeOut ;
uint8_t wakeupstatus = CANWAKEUPFAILED;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
/* Wake up request */
CANx->MCR &= ~MCR_SLEEP;
/* Sleep mode status */
while(((CANx->MSR & CAN_MSR_SLAK) == CAN_MSR_SLAK)&&(wait_slak!=0x00))
{
wait_slak--;
}
if((CANx->MSR & CAN_MSR_SLAK) != CAN_MSR_SLAK)
{
/* Sleep mode exited */
wakeupstatus = CANWAKEUPOK;
}
/* At this step, sleep mode status */
return (uint8_t)wakeupstatus;
}
/**
* @brief Checks whether the specified CAN flag is set or not.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_FLAG: specifies the flag to check.
* This parameter can be: CAN_FLAG_EWG, CAN_FLAG_EPV or CAN_FLAG_BOF.
* @retval The new state of CAN_FLAG (SET or RESET).
*/
FlagStatus CAN_GetFlagStatus(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
{
FlagStatus bitstatus = RESET;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_FLAG(CAN_FLAG));
/* Check the status of the specified CAN flag */
if ((CANx->ESR & CAN_FLAG) != (uint32_t)RESET)
{
/* CAN_FLAG is set */
bitstatus = SET;
}
else
{
/* CAN_FLAG is reset */
bitstatus = RESET;
}
/* Return the CAN_FLAG status */
return bitstatus;
}
/**
* @brief Clears the CAN's pending flags.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_FLAG: specifies the flag to clear.
* @retval None.
*/
void CAN_ClearFlag(CAN_TypeDef* CANx, uint32_t CAN_FLAG)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_FLAG(CAN_FLAG));
/* Clear the selected CAN flags */
CANx->ESR &= ~CAN_FLAG;
}
/**
* @brief Checks whether the specified CAN interrupt has occurred or not.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_IT: specifies the CAN interrupt source to check.
* This parameter can be: CAN_IT_RQCP0, CAN_IT_RQCP1, CAN_IT_RQCP2,
* CAN_IT_FF0, CAN_IT_FOV0, CAN_IT_FF1,
* CAN_IT_FOV1, CAN_IT_EWG, CAN_IT_EPV,
* CAN_IT_BOF, CAN_IT_WKU or CAN_IT_SLK.
* @retval The new state of CAN_IT (SET or RESET).
*/
ITStatus CAN_GetITStatus(CAN_TypeDef* CANx, uint32_t CAN_IT)
{
ITStatus pendingbitstatus = RESET;
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_ITStatus(CAN_IT));
switch (CAN_IT)
{
case CAN_IT_RQCP0:
pendingbitstatus = CheckITStatus(CANx->TSR, TSR_RQCP0);
break;
case CAN_IT_RQCP1:
pendingbitstatus = CheckITStatus(CANx->TSR, TSR_RQCP1);
break;
case CAN_IT_RQCP2:
pendingbitstatus = CheckITStatus(CANx->TSR, TSR_RQCP2);
break;
case CAN_IT_FF0:
pendingbitstatus = CheckITStatus(CANx->RF0R, RF0R_FULL0);
break;
case CAN_IT_FOV0:
pendingbitstatus = CheckITStatus(CANx->RF0R, RF0R_FOVR0);
break;
case CAN_IT_FF1:
pendingbitstatus = CheckITStatus(CANx->RF1R, RF1R_FULL1);
break;
case CAN_IT_FOV1:
pendingbitstatus = CheckITStatus(CANx->RF1R, RF1R_FOVR1);
break;
case CAN_IT_EWG:
pendingbitstatus = CheckITStatus(CANx->ESR, ESR_EWGF);
break;
case CAN_IT_EPV:
pendingbitstatus = CheckITStatus(CANx->ESR, ESR_EPVF);
break;
case CAN_IT_BOF:
pendingbitstatus = CheckITStatus(CANx->ESR, ESR_BOFF);
break;
case CAN_IT_SLK:
pendingbitstatus = CheckITStatus(CANx->MSR, MSR_SLAKI);
break;
case CAN_IT_WKU:
pendingbitstatus = CheckITStatus(CANx->MSR, MSR_WKUI);
break;
default :
pendingbitstatus = RESET;
break;
}
/* Return the CAN_IT status */
return pendingbitstatus;
}
/**
* @brief Clears the CAN’s interrupt pending bits.
* @param CANx: where x can be 1 or 2 to to select the CAN peripheral.
* @param CAN_IT: specifies the interrupt pending bit to clear.
* @retval None.
*/
void CAN_ClearITPendingBit(CAN_TypeDef* CANx, uint32_t CAN_IT)
{
/* Check the parameters */
assert_param(IS_CAN_ALL_PERIPH(CANx));
assert_param(IS_CAN_ITStatus(CAN_IT));
switch (CAN_IT)
{
case CAN_IT_RQCP0:
CANx->TSR = TSR_RQCP0; /* rc_w1*/
break;
case CAN_IT_RQCP1:
CANx->TSR = TSR_RQCP1; /* rc_w1*/
break;
case CAN_IT_RQCP2:
CANx->TSR = TSR_RQCP2; /* rc_w1*/
break;
case CAN_IT_FF0:
CANx->RF0R = RF0R_FULL0; /* rc_w1*/
break;
case CAN_IT_FOV0:
CANx->RF0R = RF0R_FOVR0; /* rc_w1*/
break;
case CAN_IT_FF1:
CANx->RF1R = RF1R_FULL1; /* rc_w1*/
break;
case CAN_IT_FOV1:
CANx->RF1R = RF1R_FOVR1; /* rc_w1*/
break;
case CAN_IT_EWG:
CANx->ESR &= ~ ESR_EWGF; /* rw */
break;
case CAN_IT_EPV:
CANx->ESR &= ~ ESR_EPVF; /* rw */
break;
case CAN_IT_BOF:
CANx->ESR &= ~ ESR_BOFF; /* rw */
break;
case CAN_IT_WKU:
CANx->MSR = MSR_WKUI; /* rc_w1*/
break;
case CAN_IT_SLK:
CANx->MSR = MSR_SLAKI; /* rc_w1*/
break;
default :
break;
}
}
/**
* @brief Checks whether the CAN interrupt has occurred or not.
* @param CAN_Reg: specifies the CAN interrupt register to check.
* @param It_Bit: specifies the interrupt source bit to check.
* @retval The new state of the CAN Interrupt (SET or RESET).
*/
static ITStatus CheckITStatus(uint32_t CAN_Reg, uint32_t It_Bit)
{
ITStatus pendingbitstatus = RESET;
if ((CAN_Reg & It_Bit) != (uint32_t)RESET)
{
/* CAN_IT is set */
pendingbitstatus = SET;
}
else
{
/* CAN_IT is reset */
pendingbitstatus = RESET;
}
return pendingbitstatus;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2009 STMicroelectronics *****END OF FILE****/