/* * File : cpuport.c * This file is part of RT-Thread RTOS * COPYRIGHT (C) 2006 - 2018, RT-Thread Development Team * * The license and distribution terms for this file may be * found in the file LICENSE in this distribution or at * http://www.rt-thread.org/license/LICENSE * * Change Logs: * Date Author Notes * 2011-10-21 Bernard the first version. * 2011-10-27 aozima update for cortex-M4 FPU. * 2011-12-31 aozima fixed stack align issues. * 2012-01-01 aozima support context switch load/store FPU register. * 2012-12-11 lgnq fixed the coding style. * 2012-12-23 aozima stack addr align to 8byte. * 2012-12-29 Bernard Add exception hook. * 2013-06-23 aozima support lazy stack optimized. * 2018-07-24 aozima enhancement hard fault exception handler. */ #include #define USE_FPU /* ARMCC */ ( (defined ( __CC_ARM ) && defined ( __TARGET_FPU_VFP )) \ /* IAR */ || (defined ( __ICCARM__ ) && defined ( __ARMVFP__ )) \ /* GNU */ || (defined ( __GNUC__ ) && defined ( __VFP_FP__ ) && !defined(__SOFTFP__)) ) /* exception and interrupt handler table */ rt_uint32_t rt_interrupt_from_thread; rt_uint32_t rt_interrupt_to_thread; rt_uint32_t rt_thread_switch_interrupt_flag; /* exception hook */ static rt_err_t (*rt_exception_hook)(void *context) = RT_NULL; struct exception_stack_frame { rt_uint32_t r0; rt_uint32_t r1; rt_uint32_t r2; rt_uint32_t r3; rt_uint32_t r12; rt_uint32_t lr; rt_uint32_t pc; rt_uint32_t psr; }; struct stack_frame { #if USE_FPU rt_uint32_t flag; #endif /* USE_FPU */ /* r4 ~ r11 register */ rt_uint32_t r4; rt_uint32_t r5; rt_uint32_t r6; rt_uint32_t r7; rt_uint32_t r8; rt_uint32_t r9; rt_uint32_t r10; rt_uint32_t r11; struct exception_stack_frame exception_stack_frame; }; struct exception_stack_frame_fpu { rt_uint32_t r0; rt_uint32_t r1; rt_uint32_t r2; rt_uint32_t r3; rt_uint32_t r12; rt_uint32_t lr; rt_uint32_t pc; rt_uint32_t psr; #if USE_FPU /* FPU register */ rt_uint32_t S0; rt_uint32_t S1; rt_uint32_t S2; rt_uint32_t S3; rt_uint32_t S4; rt_uint32_t S5; rt_uint32_t S6; rt_uint32_t S7; rt_uint32_t S8; rt_uint32_t S9; rt_uint32_t S10; rt_uint32_t S11; rt_uint32_t S12; rt_uint32_t S13; rt_uint32_t S14; rt_uint32_t S15; rt_uint32_t FPSCR; rt_uint32_t NO_NAME; #endif }; struct stack_frame_fpu { rt_uint32_t flag; /* r4 ~ r11 register */ rt_uint32_t r4; rt_uint32_t r5; rt_uint32_t r6; rt_uint32_t r7; rt_uint32_t r8; rt_uint32_t r9; rt_uint32_t r10; rt_uint32_t r11; #if USE_FPU /* FPU register s16 ~ s31 */ rt_uint32_t s16; rt_uint32_t s17; rt_uint32_t s18; rt_uint32_t s19; rt_uint32_t s20; rt_uint32_t s21; rt_uint32_t s22; rt_uint32_t s23; rt_uint32_t s24; rt_uint32_t s25; rt_uint32_t s26; rt_uint32_t s27; rt_uint32_t s28; rt_uint32_t s29; rt_uint32_t s30; rt_uint32_t s31; #endif struct exception_stack_frame_fpu exception_stack_frame; }; rt_uint8_t *rt_hw_stack_init(void *tentry, void *parameter, rt_uint8_t *stack_addr, void *texit) { struct stack_frame *stack_frame; rt_uint8_t *stk; unsigned long i; stk = stack_addr + sizeof(rt_uint32_t); stk = (rt_uint8_t *)RT_ALIGN_DOWN((rt_uint32_t)stk, 8); stk -= sizeof(struct stack_frame); stack_frame = (struct stack_frame *)stk; /* init all register */ for (i = 0; i < sizeof(struct stack_frame) / sizeof(rt_uint32_t); i ++) { ((rt_uint32_t *)stack_frame)[i] = 0xdeadbeef; } stack_frame->exception_stack_frame.r0 = (unsigned long)parameter; /* r0 : argument */ stack_frame->exception_stack_frame.r1 = 0; /* r1 */ stack_frame->exception_stack_frame.r2 = 0; /* r2 */ stack_frame->exception_stack_frame.r3 = 0; /* r3 */ stack_frame->exception_stack_frame.r12 = 0; /* r12 */ stack_frame->exception_stack_frame.lr = (unsigned long)texit; /* lr */ stack_frame->exception_stack_frame.pc = (unsigned long)tentry; /* entry point, pc */ stack_frame->exception_stack_frame.psr = 0x01000000L; /* PSR */ #if USE_FPU stack_frame->flag = 0; #endif /* USE_FPU */ /* return task's current stack address */ return stk; } /** * This function set the hook, which is invoked on fault exception handling. * * @param exception_handle the exception handling hook function. */ void rt_hw_exception_install(rt_err_t (*exception_handle)(void *context)) { rt_exception_hook = exception_handle; } #define SCB_CFSR (*(volatile const unsigned *)0xE000ED28) /* Configurable Fault Status Register */ #define SCB_HFSR (*(volatile const unsigned *)0xE000ED2C) /* HardFault Status Register */ #define SCB_MMAR (*(volatile const unsigned *)0xE000ED34) /* MemManage Fault Address register */ #define SCB_BFAR (*(volatile const unsigned *)0xE000ED38) /* Bus Fault Address Register */ #define SCB_AIRCR (*(volatile unsigned long *)0xE000ED0C) /* Reset control Address Register */ #define SCB_RESET_VALUE 0x05FA0004 /* Reset value, write to SCB_AIRCR can reset cpu */ #define SCB_CFSR_MFSR (*(volatile const unsigned char*)0xE000ED28) /* Memory-management Fault Status Register */ #define SCB_CFSR_BFSR (*(volatile const unsigned char*)0xE000ED29) /* Bus Fault Status Register */ #define SCB_CFSR_UFSR (*(volatile const unsigned short*)0xE000ED2A) /* Usage Fault Status Register */ #ifdef RT_USING_FINSH static void usage_fault_track(void) { rt_kprintf("usage fault:\n"); rt_kprintf("SCB_CFSR_UFSR:0x%02X ", SCB_CFSR_UFSR); if(SCB_CFSR_UFSR & (1<<0)) { /* [0]:UNDEFINSTR */ rt_kprintf("UNDEFINSTR "); } if(SCB_CFSR_UFSR & (1<<1)) { /* [1]:INVSTATE */ rt_kprintf("INVSTATE "); } if(SCB_CFSR_UFSR & (1<<2)) { /* [2]:INVPC */ rt_kprintf("INVPC "); } if(SCB_CFSR_UFSR & (1<<3)) { /* [3]:NOCP */ rt_kprintf("NOCP "); } if(SCB_CFSR_UFSR & (1<<8)) { /* [8]:UNALIGNED */ rt_kprintf("UNALIGNED "); } if(SCB_CFSR_UFSR & (1<<9)) { /* [9]:DIVBYZERO */ rt_kprintf("DIVBYZERO "); } rt_kprintf("\n"); } static void bus_fault_track(void) { rt_kprintf("bus fault:\n"); rt_kprintf("SCB_CFSR_BFSR:0x%02X ", SCB_CFSR_BFSR); if(SCB_CFSR_BFSR & (1<<0)) { /* [0]:IBUSERR */ rt_kprintf("IBUSERR "); } if(SCB_CFSR_BFSR & (1<<1)) { /* [1]:PRECISERR */ rt_kprintf("PRECISERR "); } if(SCB_CFSR_BFSR & (1<<2)) { /* [2]:IMPRECISERR */ rt_kprintf("IMPRECISERR "); } if(SCB_CFSR_BFSR & (1<<3)) { /* [3]:UNSTKERR */ rt_kprintf("UNSTKERR "); } if(SCB_CFSR_BFSR & (1<<4)) { /* [4]:STKERR */ rt_kprintf("STKERR "); } if(SCB_CFSR_BFSR & (1<<7)) { rt_kprintf("SCB->BFAR:%08X\n", SCB_BFAR); } else { rt_kprintf("\n"); } } static void mem_manage_fault_track(void) { rt_kprintf("mem manage fault:\n"); rt_kprintf("SCB_CFSR_MFSR:0x%02X ", SCB_CFSR_MFSR); if(SCB_CFSR_MFSR & (1<<0)) { /* [0]:IACCVIOL */ rt_kprintf("IACCVIOL "); } if(SCB_CFSR_MFSR & (1<<1)) { /* [1]:DACCVIOL */ rt_kprintf("DACCVIOL "); } if(SCB_CFSR_MFSR & (1<<3)) { /* [3]:MUNSTKERR */ rt_kprintf("MUNSTKERR "); } if(SCB_CFSR_MFSR & (1<<4)) { /* [4]:MSTKERR */ rt_kprintf("MSTKERR "); } if(SCB_CFSR_MFSR & (1<<7)) { /* [7]:MMARVALID */ rt_kprintf("SCB->MMAR:%08X\n", SCB_MMAR); } else { rt_kprintf("\n"); } } static void hard_fault_track(void) { if(SCB_HFSR & (1UL<<1)) { /* [1]:VECTBL, Indicates hard fault is caused by failed vector fetch. */ rt_kprintf("failed vector fetch\n"); } if(SCB_HFSR & (1UL<<30)) { /* [30]:FORCED, Indicates hard fault is taken because of bus fault, memory management fault, or usage fault. */ if(SCB_CFSR_BFSR) { bus_fault_track(); } if(SCB_CFSR_MFSR) { mem_manage_fault_track(); } if(SCB_CFSR_UFSR) { usage_fault_track(); } } if(SCB_HFSR & (1UL<<31)) { /* [31]:DEBUGEVT, Indicates hard fault is triggered by debug event. */ rt_kprintf("debug event\n"); } } #endif /* RT_USING_FINSH */ struct exception_info { rt_uint32_t exc_return; struct stack_frame stack_frame; }; void rt_hw_hard_fault_exception(struct exception_info *exception_info) { extern long list_thread(void); struct exception_stack_frame *exception_stack = &exception_info->stack_frame.exception_stack_frame; struct stack_frame *context = &exception_info->stack_frame; if (rt_exception_hook != RT_NULL) { rt_err_t result; result = rt_exception_hook(exception_stack); if (result == RT_EOK) return; } rt_kprintf("psr: 0x%08x\n", context->exception_stack_frame.psr); rt_kprintf("r00: 0x%08x\n", context->exception_stack_frame.r0); rt_kprintf("r01: 0x%08x\n", context->exception_stack_frame.r1); rt_kprintf("r02: 0x%08x\n", context->exception_stack_frame.r2); rt_kprintf("r03: 0x%08x\n", context->exception_stack_frame.r3); rt_kprintf("r04: 0x%08x\n", context->r4); rt_kprintf("r05: 0x%08x\n", context->r5); rt_kprintf("r06: 0x%08x\n", context->r6); rt_kprintf("r07: 0x%08x\n", context->r7); rt_kprintf("r08: 0x%08x\n", context->r8); rt_kprintf("r09: 0x%08x\n", context->r9); rt_kprintf("r10: 0x%08x\n", context->r10); rt_kprintf("r11: 0x%08x\n", context->r11); rt_kprintf("r12: 0x%08x\n", context->exception_stack_frame.r12); rt_kprintf(" lr: 0x%08x\n", context->exception_stack_frame.lr); rt_kprintf(" pc: 0x%08x\n", context->exception_stack_frame.pc); if (exception_info->exc_return & (1 << 2)) { rt_kprintf("hard fault on thread: %s\r\n\r\n", rt_thread_self()->name); #ifdef RT_USING_FINSH list_thread(); #endif } else { rt_kprintf("hard fault on handler\r\n\r\n"); } if ( (exception_info->exc_return & 0x10) == 0) { rt_kprintf("FPU active!\r\n"); } #ifdef RT_USING_FINSH hard_fault_track(); #endif /* RT_USING_FINSH */ while (1); } /** * shutdown CPU */ void rt_hw_cpu_shutdown(void) { rt_kprintf("shutdown...\n"); RT_ASSERT(0); } /** * reset CPU */ RT_WEAK void rt_hw_cpu_reset(void) { SCB_AIRCR = SCB_RESET_VALUE; } #ifdef RT_USING_CPU_FFS /** * This function finds the first bit set (beginning with the least significant bit) * in value and return the index of that bit. * * Bits are numbered starting at 1 (the least significant bit). A return value of * zero from any of these functions means that the argument was zero. * * @return return the index of the first bit set. If value is 0, then this function * shall return 0. */ #if defined(__CC_ARM) __asm int __rt_ffs(int value) { CMP r0, #0x00 BEQ exit RBIT r0, r0 CLZ r0, r0 ADDS r0, r0, #0x01 exit BX lr } #elif defined(__IAR_SYSTEMS_ICC__) int __rt_ffs(int value) { if (value == 0) return value; asm("RBIT %0, %1" : "=r"(value) : "r"(value)); asm("CLZ %0, %1" : "=r"(value) : "r"(value)); asm("ADDS %0, %1, #0x01" : "=r"(value) : "r"(value)); return value; } #elif defined(__GNUC__) int __rt_ffs(int value) { return __builtin_ffs(value); } #endif #endif