/* * rtc and date/time utility functions * * Copyright (C) 2005-06 Tower Technologies * Author: Alessandro Zummo * * based on arch/arm/common/rtctime.c and other bits * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include static const unsigned char rtc_days_in_month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; static const unsigned short rtc_ydays[2][13] = { /* Normal years */ { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365 }, /* Leap years */ { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366 } }; #define LEAPS_THRU_END_OF(y) ((y)/4 - (y)/100 + (y)/400) /* * The number of days in the month. */ int rtc_month_days(unsigned int month, unsigned int year) { return rtc_days_in_month[month] + (is_leap_year(year) && month == 1); } /* * The number of days since January 1. (0 to 365) */ int rtc_year_days(unsigned int day, unsigned int month, unsigned int year) { return rtc_ydays[is_leap_year(year)][month] + day - 1; } /* * Does the rtc_time represent a valid date/time? */ int rtc_valid_tm(struct rtc_time *tm) { if (tm->tm_year < 70 || ((unsigned)tm->tm_mon) >= 12 || tm->tm_mday < 1 || tm->tm_mday > rtc_month_days(tm->tm_mon, tm->tm_year + 1900) || ((unsigned)tm->tm_hour) >= 24 || ((unsigned)tm->tm_min) >= 60 || ((unsigned)tm->tm_sec) >= 60) { return -1; } return 0; } /* * mktime64 - Converts date to seconds. * Converts Gregorian date to seconds since 1970-01-01 00:00:00. * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. * * [For the Julian calendar (which was used in Russia before 1917, * Britain & colonies before 1752, anywhere else before 1582, * and is still in use by some communities) leave out the * -year/100+year/400 terms, and add 10.] * * This algorithm was first published by Gauss (I think). * * A leap second can be indicated by calling this function with sec as * 60 (allowable under ISO 8601). The leap second is treated the same * as the following second since they don't exist in UNIX time. * * An encoding of midnight at the end of the day as 24:00:00 - ie. midnight * tomorrow - (allowable under ISO 8601) is supported. */ time64_t mktime64(const unsigned int year0, const unsigned int mon0, const unsigned int day, const unsigned int hour, const unsigned int min, const unsigned int sec) { unsigned int mon = mon0, year = year0; time64_t diff; /* 1..12 -> 11,12,1..10 */ if (0 >= (int)(mon -= 2)) { mon += 12; /* Puts Feb last since it has leap day */ year -= 1; } return ((((time64_t) (year / 4 - year / 100 + year / 400 + 367 * mon / 12 + day) + year * 365 - 719499 ) * 24 + hour /* now have hours - midnight tomorrow handled here */ ) * 60 + min /* now have minutes */ ) * 60 + sec; /* finally seconds */ } /* * rtc_tm_to_time64 - Converts rtc_time to time64_t. * Convert Gregorian date to seconds since 01-01-1970 00:00:00. */ time64_t rtc_tm_to_time64(struct rtc_time *tm) { return mktime64(tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec); } static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder) { *remainder = dividend % divisor; return dividend / divisor; } static s64 div_s64_rem(s64 dividend, s32 divisor, unsigned int *remainder) { u64 quotient; if (dividend < 0) { quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder); *remainder = -*remainder; if (divisor > 0) { quotient = -quotient; } } else { quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder); if (divisor < 0) { quotient = -quotient; } } return quotient; } /* * rtc_time_to_tm64 - Converts time64_t to rtc_time. * Convert seconds since 01-01-1970 00:00:00 to Gregorian date. */ void rtc_time64_to_tm(time64_t time, struct rtc_time *tm) { unsigned int month, year, secs; int days; /* time must be positive */ days = div_s64_rem(time, 86400, &secs); /* day of the week, 1970-01-01 was a Thursday */ tm->tm_wday = (days + 4) % 7; year = 1970 + days / 365; days -= (year - 1970) * 365 + LEAPS_THRU_END_OF(year - 1) - LEAPS_THRU_END_OF(1970 - 1); if (days < 0) { year -= 1; days += 365 + is_leap_year(year); } tm->tm_year = year - 1900; tm->tm_yday = days + 1; for (month = 0; month < 11; month++) { int newdays; newdays = days - rtc_month_days(month, year); if (newdays < 0) { break; } days = newdays; } tm->tm_mon = month; tm->tm_mday = days + 1; tm->tm_hour = secs / 3600; secs -= tm->tm_hour * 3600; tm->tm_min = secs / 60; tm->tm_sec = secs - tm->tm_min * 60; tm->tm_isdst = 0; }