/* * Copyright (c) 2006-2022, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2018-06-23 armink the first version * 2019-08-22 MurphyZhao adapt to none rt-thread case */ #include #ifdef RT_VER_NUM #include #include #include #include /* ========================== block device ======================== */ struct fal_blk_device { struct rt_device parent; struct rt_device_blk_geometry geometry; const struct fal_partition *fal_part; }; /* RT-Thread device interface */ #if RTTHREAD_VERSION >= 30000 static rt_err_t blk_dev_control(rt_device_t dev, int cmd, void *args) #else static rt_err_t blk_dev_control(rt_device_t dev, rt_uint8_t cmd, void *args) #endif { struct fal_blk_device *part = (struct fal_blk_device*) dev; assert(part != RT_NULL); if (cmd == RT_DEVICE_CTRL_BLK_GETGEOME) { struct rt_device_blk_geometry *geometry; geometry = (struct rt_device_blk_geometry *) args; if (geometry == RT_NULL) { return -RT_ERROR; } memcpy(geometry, &part->geometry, sizeof(struct rt_device_blk_geometry)); } else if (cmd == RT_DEVICE_CTRL_BLK_ERASE) { rt_uint32_t *addrs = (rt_uint32_t *) args, start_addr = addrs[0], end_addr = addrs[1], phy_start_addr; rt_size_t phy_size; if (addrs == RT_NULL || start_addr > end_addr) { return -RT_ERROR; } if (end_addr == start_addr) { end_addr++; } phy_start_addr = start_addr * part->geometry.bytes_per_sector; phy_size = (end_addr - start_addr) * part->geometry.bytes_per_sector; if (fal_partition_erase(part->fal_part, phy_start_addr, phy_size) < 0) { return -RT_ERROR; } } return RT_EOK; } static rt_ssize_t blk_dev_read(rt_device_t dev, rt_off_t pos, void* buffer, rt_size_t size) { int ret = 0; struct fal_blk_device *part = (struct fal_blk_device*) dev; assert(part != RT_NULL); ret = fal_partition_read(part->fal_part, pos * part->geometry.block_size, buffer, size * part->geometry.block_size); if (ret != (int)(size * part->geometry.block_size)) { ret = 0; } else { ret = size; } return ret; } static rt_ssize_t blk_dev_write(rt_device_t dev, rt_off_t pos, const void* buffer, rt_size_t size) { int ret = 0; struct fal_blk_device *part; rt_off_t phy_pos; rt_size_t phy_size; part = (struct fal_blk_device*) dev; assert(part != RT_NULL); /* change the block device's logic address to physical address */ phy_pos = pos * part->geometry.bytes_per_sector; phy_size = size * part->geometry.bytes_per_sector; ret = fal_partition_erase(part->fal_part, phy_pos, phy_size); if (ret == (int) phy_size) { ret = fal_partition_write(part->fal_part, phy_pos, buffer, phy_size); } if (ret != (int) phy_size) { ret = 0; } else { ret = size; } return ret; } #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops blk_dev_ops = { RT_NULL, RT_NULL, RT_NULL, blk_dev_read, blk_dev_write, blk_dev_control }; #endif /** * create RT-Thread block device by specified partition * * @param parition_name partition name * * @return != NULL: created block device * NULL: created failed */ struct rt_device *fal_blk_device_create(const char *parition_name) { struct fal_blk_device *blk_dev; const struct fal_partition *fal_part = fal_partition_find(parition_name); const struct fal_flash_dev *fal_flash = NULL; if (!fal_part) { log_e("Error: the partition name (%s) is not found.", parition_name); return NULL; } if ((fal_flash = fal_flash_device_find(fal_part->flash_name)) == NULL) { log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name); return NULL; } blk_dev = (struct fal_blk_device*) rt_malloc(sizeof(struct fal_blk_device)); if (blk_dev) { blk_dev->fal_part = fal_part; blk_dev->geometry.bytes_per_sector = fal_flash->blk_size; blk_dev->geometry.block_size = fal_flash->blk_size; blk_dev->geometry.sector_count = fal_part->len / fal_flash->blk_size; /* register device */ blk_dev->parent.type = RT_Device_Class_Block; #ifdef RT_USING_DEVICE_OPS blk_dev->parent.ops = &blk_dev_ops; #else blk_dev->parent.init = NULL; blk_dev->parent.open = NULL; blk_dev->parent.close = NULL; blk_dev->parent.read = blk_dev_read; blk_dev->parent.write = blk_dev_write; blk_dev->parent.control = blk_dev_control; #endif /* no private */ blk_dev->parent.user_data = RT_NULL; log_i("The FAL block device (%s) created successfully", fal_part->name); rt_device_register(RT_DEVICE(blk_dev), fal_part->name, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_STANDALONE); } else { log_e("Error: no memory for create FAL block device"); } return RT_DEVICE(blk_dev); } /* ========================== MTD nor device ======================== */ #if defined(RT_USING_MTD_NOR) struct fal_mtd_nor_device { struct rt_mtd_nor_device parent; const struct fal_partition *fal_part; }; static rt_ssize_t mtd_nor_dev_read(struct rt_mtd_nor_device* device, rt_off_t offset, rt_uint8_t* data, rt_uint32_t length) { int ret = 0; struct fal_mtd_nor_device *part = (struct fal_mtd_nor_device*) device; assert(part != RT_NULL); ret = fal_partition_read(part->fal_part, offset, data, length); if (ret != (int)length) { ret = 0; } else { ret = length; } return ret; } static rt_ssize_t mtd_nor_dev_write(struct rt_mtd_nor_device* device, rt_off_t offset, const rt_uint8_t* data, rt_uint32_t length) { int ret = 0; struct fal_mtd_nor_device *part; part = (struct fal_mtd_nor_device*) device; assert(part != RT_NULL); ret = fal_partition_write(part->fal_part, offset, data, length); if (ret != (int) length) { ret = 0; } else { ret = length; } return ret; } static rt_err_t mtd_nor_dev_erase(struct rt_mtd_nor_device* device, rt_off_t offset, rt_uint32_t length) { int ret = 0; struct fal_mtd_nor_device *part; part = (struct fal_mtd_nor_device*) device; assert(part != RT_NULL); ret = fal_partition_erase(part->fal_part, offset, length); if ((rt_uint32_t)ret != length || ret < 0) { return -RT_ERROR; } else { return RT_EOK; } } static const struct rt_mtd_nor_driver_ops _ops = { RT_NULL, mtd_nor_dev_read, mtd_nor_dev_write, mtd_nor_dev_erase, }; /** * create RT-Thread MTD NOR device by specified partition * * @param parition_name partition name * * @return != NULL: created MTD NOR device * NULL: created failed */ struct rt_device *fal_mtd_nor_device_create(const char *parition_name) { struct fal_mtd_nor_device *mtd_nor_dev; const struct fal_partition *fal_part = fal_partition_find(parition_name); const struct fal_flash_dev *fal_flash = NULL; if (!fal_part) { log_e("Error: the partition name (%s) is not found.", parition_name); return NULL; } if ((fal_flash = fal_flash_device_find(fal_part->flash_name)) == NULL) { log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name); return NULL; } mtd_nor_dev = (struct fal_mtd_nor_device*) rt_malloc(sizeof(struct fal_mtd_nor_device)); if (mtd_nor_dev) { mtd_nor_dev->fal_part = fal_part; mtd_nor_dev->parent.block_start = 0; mtd_nor_dev->parent.block_end = fal_part->len / fal_flash->blk_size; mtd_nor_dev->parent.block_size = fal_flash->blk_size; /* set ops */ mtd_nor_dev->parent.ops = &_ops; log_i("The FAL MTD NOR device (%s) created successfully", fal_part->name); rt_mtd_nor_register_device(fal_part->name, &mtd_nor_dev->parent); } else { log_e("Error: no memory for create FAL MTD NOR device"); } return RT_DEVICE(&mtd_nor_dev->parent); } #endif /* defined(RT_USING_MTD_NOR) */ /* ========================== char device ======================== */ struct fal_char_device { struct rt_device parent; const struct fal_partition *fal_part; }; /* RT-Thread device interface */ static rt_ssize_t char_dev_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { int ret = 0; struct fal_char_device *part = (struct fal_char_device *) dev; assert(part != RT_NULL); if (pos + size > part->fal_part->len) size = part->fal_part->len - pos; ret = fal_partition_read(part->fal_part, pos, buffer, size); if (ret != (int)(size)) ret = 0; return ret; } static rt_ssize_t char_dev_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { int ret = 0; struct fal_char_device *part; part = (struct fal_char_device *) dev; assert(part != RT_NULL); if (pos == 0) { fal_partition_erase_all(part->fal_part); } else if (pos + size > part->fal_part->len) { size = part->fal_part->len - pos; } ret = fal_partition_write(part->fal_part, pos, buffer, size); if (ret != (int) size) ret = 0; return ret; } #ifdef RT_USING_DEVICE_OPS const static struct rt_device_ops char_dev_ops = { RT_NULL, RT_NULL, RT_NULL, char_dev_read, char_dev_write, RT_NULL }; #endif #ifdef RT_USING_POSIX_DEVIO #include #include #include /* rename() */ #include #include /* statfs() */ /* RT-Thread device filesystem interface */ static int char_dev_fopen(struct dfs_file *fd) { struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data; assert(part != RT_NULL); switch (fd->flags & O_ACCMODE) { case O_RDONLY: break; case O_WRONLY: case O_RDWR: /* erase partition when device file open */ fal_partition_erase_all(part->fal_part); break; default: break; } fd->pos = 0; return RT_EOK; } static int char_dev_fread(struct dfs_file *fd, void *buf, size_t count) { int ret = 0; struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data; assert(part != RT_NULL); if (fd->pos + count > part->fal_part->len) count = part->fal_part->len - fd->pos; ret = fal_partition_read(part->fal_part, fd->pos, buf, count); if (ret != (int)(count)) return 0; fd->pos += ret; return ret; } static int char_dev_fwrite(struct dfs_file *fd, const void *buf, size_t count) { int ret = 0; struct fal_char_device *part = (struct fal_char_device *) fd->vnode->data; assert(part != RT_NULL); if (fd->pos + count > part->fal_part->len) count = part->fal_part->len - fd->pos; ret = fal_partition_write(part->fal_part, fd->pos, buf, count); if (ret != (int) count) return 0; fd->pos += ret; return ret; } static const struct dfs_file_ops char_dev_fops = { char_dev_fopen, RT_NULL, RT_NULL, char_dev_fread, char_dev_fwrite, RT_NULL, /* flush */ RT_NULL, /* lseek */ RT_NULL, /* getdents */ RT_NULL, }; #endif /* defined(RT_USING_POSIX_DEVIO) */ /** * create RT-Thread char device by specified partition * * @param parition_name partition name * * @return != NULL: created char device * NULL: created failed */ struct rt_device *fal_char_device_create(const char *parition_name) { struct fal_char_device *char_dev; const struct fal_partition *fal_part = fal_partition_find(parition_name); if (!fal_part) { log_e("Error: the partition name (%s) is not found.", parition_name); return NULL; } if ((fal_flash_device_find(fal_part->flash_name)) == NULL) { log_e("Error: the flash device name (%s) is not found.", fal_part->flash_name); return NULL; } char_dev = (struct fal_char_device *) rt_malloc(sizeof(struct fal_char_device)); if (char_dev) { char_dev->fal_part = fal_part; /* register device */ char_dev->parent.type = RT_Device_Class_Char; #ifdef RT_USING_DEVICE_OPS char_dev->parent.ops = &char_dev_ops; #else char_dev->parent.init = NULL; char_dev->parent.open = NULL; char_dev->parent.close = NULL; char_dev->parent.read = char_dev_read; char_dev->parent.write = char_dev_write; char_dev->parent.control = NULL; /* no private */ char_dev->parent.user_data = NULL; #endif rt_device_register(RT_DEVICE(char_dev), fal_part->name, RT_DEVICE_FLAG_RDWR); log_i("The FAL char device (%s) created successfully", fal_part->name); #ifdef RT_USING_POSIX_DEVIO /* set fops */ char_dev->parent.fops = &char_dev_fops; #endif } else { log_e("Error: no memory for create FAL char device"); } return RT_DEVICE(char_dev); } #if defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) #include extern int fal_init_check(void); static void fal(uint8_t argc, char **argv) { #define __is_print(ch) ((unsigned int)((ch) - ' ') < 127u - ' ') #define HEXDUMP_WIDTH 16 #define CMD_PROBE_INDEX 0 #define CMD_READ_INDEX 1 #define CMD_WRITE_INDEX 2 #define CMD_ERASE_INDEX 3 #define CMD_BENCH_INDEX 4 int result = 0; static const struct fal_flash_dev *flash_dev = NULL; static const struct fal_partition *part_dev = NULL; size_t i = 0, j = 0; const char* help_info[] = { [CMD_PROBE_INDEX] = "fal probe [dev_name|part_name] - probe flash device or partition by given name", [CMD_READ_INDEX] = "fal read addr size - read 'size' bytes starting at 'addr'", [CMD_WRITE_INDEX] = "fal write addr data1 ... dataN - write some bytes 'data' starting at 'addr'", [CMD_ERASE_INDEX] = "fal erase addr size - erase 'size' bytes starting at 'addr'", [CMD_BENCH_INDEX] = "fal bench - benchmark test with per block size", }; if (fal_init_check() != 1) { rt_kprintf("\n[Warning] FAL is not initialized or failed to initialize!\n\n"); return; } if (argc < 2) { rt_kprintf("Usage:\n"); for (i = 0; i < sizeof(help_info) / sizeof(char*); i++) { rt_kprintf("%s\n", help_info[i]); } rt_kprintf("\n"); } else { const char *operator = argv[1]; uint32_t addr, size; if (!strcmp(operator, "probe")) { if (argc >= 3) { char *dev_name = argv[2]; if ((flash_dev = fal_flash_device_find(dev_name)) != NULL) { part_dev = NULL; } else if ((part_dev = fal_partition_find(dev_name)) != NULL) { flash_dev = NULL; } else { rt_kprintf("Device %s NOT found. Probe failed.\n", dev_name); flash_dev = NULL; part_dev = NULL; } } if (flash_dev) { rt_kprintf("Probed a flash device | %s | addr: %ld | len: %d |.\n", flash_dev->name, flash_dev->addr, flash_dev->len); } else if (part_dev) { rt_kprintf("Probed a flash partition | %s | flash_dev: %s | offset: %ld | len: %d |.\n", part_dev->name, part_dev->flash_name, part_dev->offset, part_dev->len); } else { rt_kprintf("No flash device or partition was probed.\n"); rt_kprintf("Usage: %s.\n", help_info[CMD_PROBE_INDEX]); fal_show_part_table(); } } else { if (!flash_dev && !part_dev) { rt_kprintf("No flash device or partition was probed. Please run 'fal probe'.\n"); return; } if (!rt_strcmp(operator, "read")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", help_info[CMD_READ_INDEX]); return; } else { addr = strtol(argv[2], NULL, 0); size = strtol(argv[3], NULL, 0); uint8_t *data = rt_malloc(size); if (data) { if (flash_dev) { result = flash_dev->ops.read(addr, data, size); } else if (part_dev) { result = fal_partition_read(part_dev, addr, data, size); } if (result >= 0) { rt_kprintf("Read data success. Start from 0x%08X, size is %ld. The data is:\n", addr, size); rt_kprintf("Offset (h) 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F\n"); for (i = 0; i < size; i += HEXDUMP_WIDTH) { rt_kprintf("[%08X] ", addr + i); /* dump hex */ for (j = 0; j < HEXDUMP_WIDTH; j++) { if (i + j < size) { rt_kprintf("%02X ", data[i + j]); } else { rt_kprintf(" "); } } /* dump char for hex */ for (j = 0; j < HEXDUMP_WIDTH; j++) { if (i + j < size) { rt_kprintf("%c", __is_print(data[i + j]) ? data[i + j] : '.'); } } rt_kprintf("\n"); } rt_kprintf("\n"); } rt_free(data); } else { rt_kprintf("Low memory!\n"); } } } else if (!strcmp(operator, "write")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", help_info[CMD_WRITE_INDEX]); return; } else { addr = strtol(argv[2], NULL, 0); size = argc - 3; uint8_t *data = rt_malloc(size); if (data) { for (i = 0; i < size; i++) { data[i] = strtol(argv[3 + i], NULL, 0); } if (flash_dev) { result = flash_dev->ops.write(addr, data, size); } else if (part_dev) { result = fal_partition_write(part_dev, addr, data, size); } if (result >= 0) { rt_kprintf("Write data success. Start from 0x%08X, size is %ld.\n", addr, size); rt_kprintf("Write data: "); for (i = 0; i < size; i++) { rt_kprintf("%d ", data[i]); } rt_kprintf(".\n"); } rt_free(data); } else { rt_kprintf("Low memory!\n"); } } } else if (!rt_strcmp(operator, "erase")) { if (argc < 4) { rt_kprintf("Usage: %s.\n", help_info[CMD_ERASE_INDEX]); return; } else { addr = strtol(argv[2], NULL, 0); size = strtol(argv[3], NULL, 0); if (flash_dev) { result = flash_dev->ops.erase(addr, size); } else if (part_dev) { result = fal_partition_erase(part_dev, addr, size); } if (result >= 0) { rt_kprintf("Erase data success. Start from 0x%08X, size is %ld.\n", addr, size); } } } else if (!strcmp(operator, "bench")) { if (argc < 3) { rt_kprintf("Usage: %s.\n", help_info[CMD_BENCH_INDEX]); return; } else if ((argc > 3 && strcmp(argv[3], "yes")) || argc < 4) { rt_kprintf("DANGER: It will erase full chip or partition! Please run 'fal bench %d yes'.\n", strtol(argv[2], NULL, 0)); return; } /* full chip benchmark test */ uint32_t start_time, time_cast; size_t write_size = strtol(argv[2], NULL, 0), read_size = strtol(argv[2], NULL, 0), cur_op_size; uint8_t *write_data = (uint8_t *)rt_malloc(write_size), *read_data = (uint8_t *)rt_malloc(read_size); if (write_data && read_data) { for (i = 0; i < write_size; i ++) { write_data[i] = i & 0xFF; } if (flash_dev) { size = flash_dev->len; } else if (part_dev) { size = part_dev->len; } /* benchmark testing */ rt_kprintf("Erasing %ld bytes data, waiting...\n", size); start_time = rt_tick_get(); if (flash_dev) { result = flash_dev->ops.erase(0, size); } else if (part_dev) { result = fal_partition_erase(part_dev, 0, size); } if (result >= 0) { time_cast = rt_tick_get() - start_time; rt_kprintf("Erase benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Erase benchmark has an error. Error code: %d.\n", result); } /* write test */ rt_kprintf("Writing %ld bytes data, waiting...\n", size); start_time = rt_tick_get(); for (i = 0; i < size; i += write_size) { if (i + write_size <= size) { cur_op_size = write_size; } else { cur_op_size = size - i; } if (flash_dev) { result = flash_dev->ops.write(i, write_data, cur_op_size); } else if (part_dev) { result = fal_partition_write(part_dev, i, write_data, cur_op_size); } if (result < 0) { break; } } if (result >= 0) { time_cast = rt_tick_get() - start_time; rt_kprintf("Write benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Write benchmark has an error. Error code: %d.\n", result); } /* read test */ rt_kprintf("Reading %ld bytes data, waiting...\n", size); start_time = rt_tick_get(); for (i = 0; i < size; i += read_size) { if (i + read_size <= size) { cur_op_size = read_size; } else { cur_op_size = size - i; } if (flash_dev) { result = flash_dev->ops.read(i, read_data, cur_op_size); } else if (part_dev) { result = fal_partition_read(part_dev, i, read_data, cur_op_size); } /* data check */ for (size_t index = 0; index < cur_op_size; index ++) { if (write_data[index] != read_data[index]) { rt_kprintf("%d %d %02x %02x.\n", i, index, write_data[index], read_data[index]); } } if (memcmp(write_data, read_data, cur_op_size)) { result = -RT_ERROR; rt_kprintf("Data check ERROR! Please check you flash by other command.\n"); } /* has an error */ if (result < 0) { break; } } if (result >= 0) { time_cast = rt_tick_get() - start_time; rt_kprintf("Read benchmark success, total time: %d.%03dS.\n", time_cast / RT_TICK_PER_SECOND, time_cast % RT_TICK_PER_SECOND / ((RT_TICK_PER_SECOND * 1 + 999) / 1000)); } else { rt_kprintf("Read benchmark has an error. Error code: %d.\n", result); } } else { rt_kprintf("Low memory!\n"); } rt_free(write_data); rt_free(read_data); } else { rt_kprintf("Usage:\n"); for (i = 0; i < sizeof(help_info) / sizeof(char*); i++) { rt_kprintf("%s\n", help_info[i]); } rt_kprintf("\n"); return; } if (result < 0) { rt_kprintf("This operate has an error. Error code: %d.\n", result); } } } } MSH_CMD_EXPORT(fal, FAL (Flash Abstraction Layer) operate.); #endif /* defined(RT_USING_FINSH) && defined(FINSH_USING_MSH) */ #endif /* RT_VER_NUM */