#include #include "board.h" #include "drv_led.h" /** * * LED1 <==> GPIO1[11] * LED2 <==> GPIO1[12] * **/ #define LED_NUM 2 #define LED1_PIN 11 #define LED1_PORT 1 #define LED2_PIN 12 #define LED2_PORT 1 struct led_ctrl { uint8_t num; uint8_t port; }; struct lpc_led { /* inherit from rt_device */ struct rt_device parent; struct led_ctrl ctrl[LED_NUM]; }; static struct lpc_led led; static rt_err_t rt_led_init(rt_device_t dev) { /* Enable clock and init GPIO outputs */ LPC_CCU1->CLK_M4_GPIO_CFG = CCU_CLK_CFG_AUTO | CCU_CLK_CFG_RUN; while (!(LPC_CCU1->CLK_M4_GPIO_STAT & CCU_CLK_STAT_RUN)); /* set GPIO1[11] GPIO1[12] as GPIO. */ LPC_SCU->SFSP2_11 = 0; /* GPIO1[11] */ LPC_SCU->SFSP2_12 = 0; /* GPIO1[12] */ /* set GPIO1[11] GPIO1[12] output. */ LPC_GPIO_PORT->DIR[LED1_PORT] |= 0x01 << LED1_PIN; LPC_GPIO_PORT->DIR[LED2_PORT] |= 0x01 << LED2_PIN; /* turn off all the led */ LPC_GPIO_PORT->SET[LED1_PORT] |= 0x01 << LED1_PIN; LPC_GPIO_PORT->SET[LED2_PORT] |= 0x01 << LED2_PIN; led.ctrl[0].num = LED1_PIN; led.ctrl[0].port = LED1_PORT; led.ctrl[1].num = LED2_PIN; led.ctrl[1].port = LED2_PORT; return RT_EOK; } static rt_err_t rt_led_open(rt_device_t dev, rt_uint16_t oflag) { return RT_EOK; } static rt_err_t rt_led_close(rt_device_t dev) { return RT_EOK; } static rt_size_t rt_led_read(rt_device_t dev, rt_off_t pos, void *buffer, rt_size_t size) { rt_ubase_t index = 0; rt_ubase_t nr = size; rt_uint8_t *value = buffer; RT_ASSERT(dev == &led.parent); RT_ASSERT((pos + size) <= LED_NUM); for (index = 0; index < nr; index++) { if ((LPC_GPIO_PORT->PIN[led.ctrl[pos + index].port] & (1 << led.ctrl[pos + index].num)) != 0) { *value = 0; } else { *value = 1; } value++; } return index; } static rt_size_t rt_led_write(rt_device_t dev, rt_off_t pos, const void *buffer, rt_size_t size) { rt_ubase_t index = 0; rt_ubase_t nw = size; const rt_uint8_t *value = buffer; RT_ASSERT(dev == &led.parent); RT_ASSERT((pos + size) <= LED_NUM); for (index = 0; index < nw; index++) { if (*value++) { LPC_GPIO_PORT->CLR[led.ctrl[pos + index].port] = (1 << led.ctrl[pos + index].num); } else { LPC_GPIO_PORT->SET[led.ctrl[pos + index].port] = (1 << led.ctrl[pos + index].num); } } return index; } static rt_err_t rt_led_control(rt_device_t dev, int cmd, void *args) { RT_ASSERT(dev == &led.parent); if (cmd == LED_DEVICE_CTRL) { rt_uint32_t *led_num = args; *led_num = LED_NUM; } return RT_EOK; } int rt_led_hw_init(void) { led.parent.type = RT_Device_Class_Char; led.parent.rx_indicate = RT_NULL; led.parent.tx_complete = RT_NULL; led.parent.init = rt_led_init; led.parent.open = rt_led_open; led.parent.close = rt_led_close; led.parent.read = rt_led_read; led.parent.write = rt_led_write; led.parent.control = rt_led_control; led.parent.user_data = RT_NULL; /* register a character device */ rt_device_register(&led.parent, "led", RT_DEVICE_FLAG_RDWR); /* init led device */ rt_led_init(&led.parent); return 0; } INIT_DEVICE_EXPORT(rt_led_hw_init); #ifdef RT_USING_FINSH #include void led_test(rt_uint32_t led_num, rt_uint32_t value) { rt_uint8_t led_value = value; rt_led_write(&led.parent, led_num, &led_value, 1); } FINSH_FUNCTION_EXPORT(led_test, e.g: led_test(0, 100).) #endif