/* * Copyright (c) 2023 HPMicro * SPDX-License-Identifier: BSD-3-Clause * */ #include "board.h" #include "hpm_uart_drv.h" #include "hpm_gptmr_drv.h" #include "hpm_gpio_drv.h" #include "hpm_usb_drv.h" #include "hpm_clock_drv.h" #include "hpm_pllctlv2_drv.h" #include "hpm_i2c_drv.h" #include "hpm_pcfg_drv.h" static board_timer_cb timer_cb; /** * @brief FLASH configuration option definitions: * option[0]: * [31:16] 0xfcf9 - FLASH configuration option tag * [15:4] 0 - Reserved * [3:0] option words (exclude option[0]) * option[1]: * [31:28] Flash probe type * 0 - SFDP SDR / 1 - SFDP DDR * 2 - 1-4-4 Read (0xEB, 24-bit address) / 3 - 1-2-2 Read(0xBB, 24-bit address) * 4 - HyperFLASH 1.8V / 5 - HyperFLASH 3V * 6 - OctaBus DDR (SPI -> OPI DDR) * 8 - Xccela DDR (SPI -> OPI DDR) * 10 - EcoXiP DDR (SPI -> OPI DDR) * [27:24] Command Pads after Power-on Reset * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI * [23:20] Command Pads after Configuring FLASH * 0 - SPI / 1 - DPI / 2 - QPI / 3 - OPI * [19:16] Quad Enable Sequence (for the device support SFDP 1.0 only) * 0 - Not needed * 1 - QE bit is at bit 6 in Status Register 1 * 2 - QE bit is at bit1 in Status Register 2 * 3 - QE bit is at bit7 in Status Register 2 * 4 - QE bit is at bit1 in Status Register 2 and should be programmed by 0x31 * [15:8] Dummy cycles * 0 - Auto-probed / detected / default value * Others - User specified value, for DDR read, the dummy cycles should be 2 * cycles on FLASH datasheet * [7:4] Misc. * 0 - Not used * 1 - SPI mode * 2 - Internal loopback * 3 - External DQS * [3:0] Frequency option * 1 - 30MHz / 2 - 50MHz / 3 - 66MHz / 4 - 80MHz / 5 - 100MHz / 6 - 120MHz / 7 - 133MHz / 8 - 166MHz * * option[2] (Effective only if the bit[3:0] in option[0] > 1) * [31:20] Reserved * [19:16] IO voltage * 0 - 3V / 1 - 1.8V * [15:12] Pin group * 0 - 1st group / 1 - 2nd group * [11:8] Connection selection * 0 - CA_CS0 / 1 - CB_CS0 / 2 - CA_CS0 + CB_CS0 (Two FLASH connected to CA and CB respectively) * [7:0] Drive Strength * 0 - Default value * option[3] (Effective only if the bit[3:0] in option[0] > 2, required only for the QSPI NOR FLASH that not supports * JESD216) * [31:16] reserved * [15:12] Sector Erase Command Option, not required here * [11:8] Sector Size Option, not required here * [7:0] Flash Size Option * 0 - 4MB / 1 - 8MB / 2 - 16MB */ #if defined(FLASH_XIP) && FLASH_XIP __attribute__ ((section(".nor_cfg_option"))) const uint32_t option[4] = {0xfcf90002, 0x00000006, 0x1000, 0x0}; #endif #if defined(FLASH_UF2) && FLASH_UF2 ATTR_PLACE_AT(".uf2_signature") const uint32_t uf2_signature = BOARD_UF2_SIGNATURE; #endif void board_init_console(void) { #if !defined(CONFIG_NDEBUG_CONSOLE) || !CONFIG_NDEBUG_CONSOLE #if BOARD_CONSOLE_TYPE == CONSOLE_TYPE_UART console_config_t cfg; /* uart needs to configure pin function before enabling clock, otherwise the level change of * uart rx pin when configuring pin function will cause a wrong data to be received. * And a uart rx dma request will be generated by default uart fifo dma trigger level. */ init_uart_pins((UART_Type *) BOARD_CONSOLE_UART_BASE); /* Configure the UART clock to 24MHz */ clock_set_source_divider(BOARD_CONSOLE_UART_CLK_NAME, clk_src_osc24m, 1U); clock_add_to_group(BOARD_CONSOLE_UART_CLK_NAME, 0); cfg.type = BOARD_CONSOLE_TYPE; cfg.base = (uint32_t)BOARD_CONSOLE_UART_BASE; cfg.src_freq_in_hz = clock_get_frequency(BOARD_CONSOLE_UART_CLK_NAME); cfg.baudrate = BOARD_CONSOLE_UART_BAUDRATE; if (status_success != console_init(&cfg)) { /* failed to initialize debug console */ while (1) { } } #else while (1) ; #endif #endif } void board_print_banner(void) { const uint8_t banner[] = "\n" "----------------------------------------------------------------------\n" "$$\\ $$\\ $$$$$$$\\ $$\\ $$\\ $$\\\n" "$$ | $$ |$$ __$$\\ $$$\\ $$$ |\\__|\n" "$$ | $$ |$$ | $$ |$$$$\\ $$$$ |$$\\ $$$$$$$\\ $$$$$$\\ $$$$$$\\\n" "$$$$$$$$ |$$$$$$$ |$$\\$$\\$$ $$ |$$ |$$ _____|$$ __$$\\ $$ __$$\\\n" "$$ __$$ |$$ ____/ $$ \\$$$ $$ |$$ |$$ / $$ | \\__|$$ / $$ |\n" "$$ | $$ |$$ | $$ |\\$ /$$ |$$ |$$ | $$ | $$ | $$ |\n" "$$ | $$ |$$ | $$ | \\_/ $$ |$$ |\\$$$$$$$\\ $$ | \\$$$$$$ |\n" "\\__| \\__|\\__| \\__| \\__|\\__| \\_______|\\__| \\______/\n" "----------------------------------------------------------------------\n"; #ifdef SDK_VERSION_STRING printf("hpm_sdk: %s\n", SDK_VERSION_STRING); #endif printf("%s", banner); } void board_print_clock_freq(void) { printf("==============================\n"); printf(" %s clock summary\n", BOARD_NAME); printf("==============================\n"); printf("cpu0:\t\t %luHz\n", clock_get_frequency(clock_cpu0)); printf("ahb:\t\t %luHz\n", clock_get_frequency(clock_ahb)); printf("mchtmr0:\t %luHz\n", clock_get_frequency(clock_mchtmr0)); printf("xpi0:\t\t %luHz\n", clock_get_frequency(clock_xpi0)); printf("==============================\n"); } void board_init(void) { init_xtal_pins(); init_py_pins_as_pgpio(); board_init_usb_dp_dm_pins(); board_init_clock(); board_init_console(); board_init_pmp(); #if BOARD_SHOW_CLOCK board_print_clock_freq(); #endif #if BOARD_SHOW_BANNER board_print_banner(); #endif } void board_init_usb_dp_dm_pins(void) { /* Disconnect usb dp/dm pins pull down 45ohm resistance */ while (sysctl_resource_any_is_busy(HPM_SYSCTL)) { ; } if (pllctlv2_xtal_is_stable(HPM_PLLCTLV2) && pllctlv2_xtal_is_enabled(HPM_PLLCTLV2)) { if (clock_check_in_group(clock_usb0, 0)) { usb_phy_disable_dp_dm_pulldown(HPM_USB0); } else { clock_add_to_group(clock_usb0, 0); usb_phy_disable_dp_dm_pulldown(HPM_USB0); clock_remove_from_group(clock_usb0, 0); } } else { uint8_t tmp; tmp = sysctl_resource_target_get_mode(HPM_SYSCTL, sysctl_resource_xtal); sysctl_resource_target_set_mode(HPM_SYSCTL, sysctl_resource_xtal, 0x03); clock_add_to_group(clock_usb0, 0); usb_phy_disable_dp_dm_pulldown(HPM_USB0); clock_remove_from_group(clock_usb0, 0); while (sysctl_resource_target_is_busy(HPM_SYSCTL, sysctl_resource_usb0)) { ; } sysctl_resource_target_set_mode(HPM_SYSCTL, sysctl_resource_xtal, tmp); } } void board_init_clock(void) { uint32_t cpu0_freq = clock_get_frequency(clock_cpu0); if (cpu0_freq == PLLCTL_SOC_PLL_REFCLK_FREQ) { /* Configure the External OSC ramp-up time: ~9ms */ pllctlv2_xtal_set_rampup_time(HPM_PLLCTLV2, 32UL * 1000UL * 9U); /* Select clock setting preset1 */ sysctl_clock_set_preset(HPM_SYSCTL, 2); } /* group0[0] */ clock_add_to_group(clock_cpu0, 0); clock_add_to_group(clock_ahb, 0); clock_add_to_group(clock_lmm0, 0); clock_add_to_group(clock_mchtmr0, 0); clock_add_to_group(clock_rom, 0); clock_add_to_group(clock_gptmr0, 0); clock_add_to_group(clock_gptmr1, 0); clock_add_to_group(clock_i2c2, 0); clock_add_to_group(clock_spi1, 0); clock_add_to_group(clock_uart0, 0); clock_add_to_group(clock_uart3, 0); clock_add_to_group(clock_watchdog0, 0); clock_add_to_group(clock_watchdog1, 0); clock_add_to_group(clock_mbx0, 0); clock_add_to_group(clock_tsns, 0); clock_add_to_group(clock_crc0, 0); clock_add_to_group(clock_adc0, 0); clock_add_to_group(clock_acmp, 0); clock_add_to_group(clock_kman, 0); clock_add_to_group(clock_gpio, 0); clock_add_to_group(clock_hdma, 0); clock_add_to_group(clock_xpi0, 0); clock_add_to_group(clock_usb0, 0); /* Connect Group0 to CPU0 */ clock_connect_group_to_cpu(0, 0); /* Bump up DCDC voltage to 1175mv */ pcfg_dcdc_set_voltage(HPM_PCFG, 1175); /* Configure CPU to 360MHz, AXI/AHB to 120MHz */ sysctl_config_cpu0_domain_clock(HPM_SYSCTL, clock_source_pll0_clk0, 2, 3); /* Configure PLL0 Post Divider */ pllctlv2_set_postdiv(HPM_PLLCTLV2, 0, 0, 0); /* PLL0CLK0: 720MHz */ pllctlv2_set_postdiv(HPM_PLLCTLV2, 0, 1, 3); /* PLL0CLK1: 450MHz */ pllctlv2_set_postdiv(HPM_PLLCTLV2, 0, 2, 7); /* PLL0CLK2: 300MHz */ /* Configure PLL0 Frequency to 720MHz */ pllctlv2_init_pll_with_freq(HPM_PLLCTLV2, 0, 720000000); clock_update_core_clock(); /* Configure mchtmr to 24MHz */ clock_set_source_divider(clock_mchtmr0, clk_src_osc24m, 1); } uint32_t board_init_gptmr_clock(GPTMR_Type *ptr) { uint32_t freq = 0; clock_name_t gptmr_clock =0; uint32_t HPM_GPTMR = (uint32_t)ptr; bool gptmr_valid = true; switch(HPM_GPTMR){ case HPM_GPTMR0_BASE: gptmr_clock = clock_gptmr0; break; case HPM_GPTMR1_BASE: gptmr_clock = clock_gptmr1; break; default: gptmr_valid = false; } if(gptmr_valid) { clock_add_to_group(gptmr_clock, 0); clock_set_source_divider(gptmr_clock, clk_src_pll1_clk1, 4); freq = clock_get_frequency(gptmr_clock); } return freq; } void board_delay_us(uint32_t us) { clock_cpu_delay_us(us); } void board_delay_ms(uint32_t ms) { clock_cpu_delay_ms(ms); } void board_timer_create(uint32_t ms, board_timer_cb cb) { uint32_t gptmr_freq; gptmr_channel_config_t config; timer_cb = cb; gptmr_channel_get_default_config(BOARD_CALLBACK_TIMER, &config); clock_add_to_group(BOARD_CALLBACK_TIMER_CLK_NAME, 0); gptmr_freq = clock_get_frequency(BOARD_CALLBACK_TIMER_CLK_NAME); config.reload = gptmr_freq / 1000 * ms; gptmr_channel_config(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH, &config, false); gptmr_enable_irq(BOARD_CALLBACK_TIMER, GPTMR_CH_RLD_IRQ_MASK(BOARD_CALLBACK_TIMER_CH)); intc_m_enable_irq_with_priority(BOARD_CALLBACK_TIMER_IRQ, 1); gptmr_start_counter(BOARD_CALLBACK_TIMER, BOARD_CALLBACK_TIMER_CH); } void board_init_gpio_pins(void) { init_gpio_pins(); gpio_set_pin_input(BOARD_APP_GPIO_CTRL, BOARD_APP_GPIO_INDEX, BOARD_APP_GPIO_PIN); } void board_init_led_pins(void) { init_led_pins_as_gpio(); gpio_set_pin_output_with_initial(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, board_get_led_gpio_off_level()); } void board_init_usb_pins(void) { init_usb_pins(); usb_hcd_set_power_ctrl_polarity(BOARD_USB, true); /* Wait USB_PWR pin control vbus power stable. Time depend on decoupling capacitor, you can decrease or increase this time */ board_delay_ms(100); /* As QFN32, QFN48 and LQFP64 has no vbus pin, so should be call usb_phy_using_internal_vbus() API to use internal vbus. */ usb_phy_using_internal_vbus(BOARD_USB); } void board_led_write(uint8_t state) { gpio_write_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN, state); } void board_led_toggle(void) { gpio_toggle_pin(BOARD_LED_GPIO_CTRL, BOARD_LED_GPIO_INDEX, BOARD_LED_GPIO_PIN); } void board_init_uart(UART_Type *ptr) { /* configure uart's pin before opening uart's clock */ init_uart_pins(ptr); board_init_uart_clock(ptr); } void board_ungate_mchtmr_at_lp_mode(void) { /* Keep cpu clock on wfi, so that mchtmr irq can still work after wfi */ sysctl_set_cpu_lp_mode(HPM_SYSCTL, BOARD_RUNNING_CORE, cpu_lp_mode_ungate_cpu_clock); } uint32_t board_init_spi_clock(SPI_Type *ptr) { if (ptr == HPM_SPI1) { clock_add_to_group(clock_spi1, 0); return clock_get_frequency(clock_spi1); } return 0; } void board_init_spi_pins(SPI_Type *ptr) { init_spi_pins(ptr); } void board_write_spi_cs(uint32_t pin, uint8_t state) { gpio_write_pin(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(pin), GPIO_GET_PIN_INDEX(pin), state); } void board_init_spi_pins_with_gpio_as_cs(SPI_Type *ptr) { init_spi_pins_with_gpio_as_cs(ptr); gpio_set_pin_output_with_initial(BOARD_SPI_CS_GPIO_CTRL, GPIO_GET_PORT_INDEX(BOARD_SPI_CS_PIN), GPIO_GET_PIN_INDEX(BOARD_SPI_CS_PIN), !BOARD_SPI_CS_ACTIVE_LEVEL); } void board_usb_vbus_ctrl(uint8_t usb_index, uint8_t level) { (void) usb_index; (void) level; } uint32_t board_init_adc16_clock(ADC16_Type *ptr, bool clk_src_ahb) { uint32_t freq = 0; if (ptr == HPM_ADC0) { if (clk_src_ahb) { /* Configure the ADC clock from AHB (@200MHz by default)*/ clock_set_adc_source(clock_adc0, clk_adc_src_ahb0); } else { /* Configure the ADC clock from pll0_clk0 divided by 2 (@200MHz by default) */ clock_set_adc_source(clock_adc0, clk_adc_src_ana0); clock_set_source_divider(clock_ana0, clk_src_pll0_clk2, 2U); } freq = clock_get_frequency(clock_adc0); } return freq; } void board_init_adc16_pins(void) { init_adc_pins(); } void board_disable_output_rgb_led(uint8_t color) { (void) color; } void board_enable_output_rgb_led(uint8_t color) { (void) color; } uint8_t board_get_led_gpio_off_level(void) { return BOARD_LED_OFF_LEVEL; } void board_init_pmp(void) { } uint32_t board_init_uart_clock(UART_Type *ptr) { uint32_t freq = 0U; if (ptr == HPM_UART0) { clock_set_source_divider(clock_uart0, clk_src_osc24m, 1); clock_add_to_group(clock_uart0, 0); freq = clock_get_frequency(clock_uart0); } else if (ptr == HPM_UART2) { clock_set_source_divider(clock_uart2, clk_src_pll0_clk2, 6); clock_add_to_group(clock_uart2, 0); freq = clock_get_frequency(clock_uart2); } else if (ptr == HPM_UART3) { clock_set_source_divider(clock_uart3, clk_src_pll0_clk2, 6); /* 50MHz */ clock_add_to_group(clock_uart3, 0); freq = clock_get_frequency(clock_uart3); } return freq; } void board_i2c_bus_clear(I2C_Type *ptr) { if (i2c_get_line_scl_status(ptr) == false) { printf("CLK is low, please power cycle the board\n"); while (1) { } } if (i2c_get_line_sda_status(ptr) == false) { printf("SDA is low, try to issue I2C bus clear\n"); } else { printf("I2C bus is ready\n"); return; } i2s_gen_reset_signal(ptr, 9); board_delay_ms(100); printf("I2C bus is cleared\n"); } void board_init_i2c(I2C_Type *ptr) { i2c_config_t config; hpm_stat_t stat; uint32_t freq; if (ptr == NULL) { return; } init_i2c_pins(ptr); board_i2c_bus_clear(ptr); clock_add_to_group(clock_i2c2, 0); /* Configure the I2C clock to 24MHz */ clock_set_source_divider(BOARD_APP_I2C_CLK_NAME, clk_src_osc24m, 1U); config.i2c_mode = i2c_mode_normal; config.is_10bit_addressing = false; freq = clock_get_frequency(BOARD_APP_I2C_CLK_NAME); stat = i2c_init_master(ptr, freq, &config); if (stat != status_success) { printf("failed to initialize i2c 0x%x\n", (uint32_t) ptr); while (1) { } } }