/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2011-07-25 weety first version */ #include #include #include #include #include #define DBG_TAG "SDIO" #ifdef RT_SDIO_DEBUG #define DBG_LVL DBG_LOG #else #define DBG_LVL DBG_INFO #endif /* RT_SDIO_DEBUG */ #include #ifndef RT_MMCSD_STACK_SIZE #define RT_MMCSD_STACK_SIZE 1024 #endif #ifndef RT_MMCSD_THREAD_PREORITY #if (RT_THREAD_PRIORITY_MAX == 32) #define RT_MMCSD_THREAD_PREORITY 0x16 #else #define RT_MMCSD_THREAD_PREORITY 0x40 #endif #endif //static struct rt_semaphore mmcsd_sem; static struct rt_thread mmcsd_detect_thread; static rt_uint8_t mmcsd_stack[RT_MMCSD_STACK_SIZE]; static struct rt_mailbox mmcsd_detect_mb; static rt_uint32_t mmcsd_detect_mb_pool[4]; static struct rt_mailbox mmcsd_hotpluge_mb; static rt_uint32_t mmcsd_hotpluge_mb_pool[4]; void mmcsd_host_lock(struct rt_mmcsd_host *host) { rt_mutex_take(&host->bus_lock, RT_WAITING_FOREVER); } void mmcsd_host_unlock(struct rt_mmcsd_host *host) { rt_mutex_release(&host->bus_lock); } void mmcsd_req_complete(struct rt_mmcsd_host *host) { rt_sem_release(&host->sem_ack); } void mmcsd_send_request(struct rt_mmcsd_host *host, struct rt_mmcsd_req *req) { do { req->cmd->retries--; req->cmd->err = 0; req->cmd->mrq = req; if (req->data) { req->cmd->data = req->data; req->data->err = 0; req->data->mrq = req; if (req->stop) { req->data->stop = req->stop; req->stop->err = 0; req->stop->mrq = req; } } host->ops->request(host, req); rt_sem_take(&host->sem_ack, RT_WAITING_FOREVER); } while(req->cmd->err && (req->cmd->retries > 0)); } rt_int32_t mmcsd_send_cmd(struct rt_mmcsd_host *host, struct rt_mmcsd_cmd *cmd, int retries) { struct rt_mmcsd_req req; rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); rt_memset(cmd->resp, 0, sizeof(cmd->resp)); cmd->retries = retries; req.cmd = cmd; cmd->data = RT_NULL; mmcsd_send_request(host, &req); return cmd->err; } rt_int32_t mmcsd_go_idle(struct rt_mmcsd_host *host) { rt_int32_t err; struct rt_mmcsd_cmd cmd; if (!controller_is_spi(host)) { mmcsd_set_chip_select(host, MMCSD_CS_HIGH); mmcsd_delay_ms(1); } rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = GO_IDLE_STATE; cmd.arg = 0; cmd.flags = RESP_SPI_R1 | RESP_NONE | CMD_BC; err = mmcsd_send_cmd(host, &cmd, 0); mmcsd_delay_ms(1); if (!controller_is_spi(host)) { mmcsd_set_chip_select(host, MMCSD_CS_IGNORE); mmcsd_delay_ms(1); } return err; } rt_int32_t mmcsd_spi_read_ocr(struct rt_mmcsd_host *host, rt_int32_t high_capacity, rt_uint32_t *ocr) { struct rt_mmcsd_cmd cmd; rt_int32_t err; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SPI_READ_OCR; cmd.arg = high_capacity ? (1 << 30) : 0; cmd.flags = RESP_SPI_R3; err = mmcsd_send_cmd(host, &cmd, 0); *ocr = cmd.resp[1]; return err; } rt_int32_t mmcsd_all_get_cid(struct rt_mmcsd_host *host, rt_uint32_t *cid) { rt_int32_t err; struct rt_mmcsd_cmd cmd; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = ALL_SEND_CID; cmd.arg = 0; cmd.flags = RESP_R2 | CMD_BCR; err = mmcsd_send_cmd(host, &cmd, 3); if (err) return err; rt_memcpy(cid, cmd.resp, sizeof(rt_uint32_t) * 4); return 0; } rt_int32_t mmcsd_get_cid(struct rt_mmcsd_host *host, rt_uint32_t *cid) { rt_int32_t err, i; struct rt_mmcsd_req req; struct rt_mmcsd_cmd cmd; struct rt_mmcsd_data data; rt_uint32_t *buf = RT_NULL; if (!controller_is_spi(host)) { if (!host->card) return -RT_ERROR; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SEND_CID; cmd.arg = host->card->rca << 16; cmd.flags = RESP_R2 | CMD_AC; err = mmcsd_send_cmd(host, &cmd, 3); if (err) return err; rt_memcpy(cid, cmd.resp, sizeof(rt_uint32_t) * 4); return 0; } buf = (rt_uint32_t *)rt_malloc(16); if (!buf) { LOG_E("allocate memory failed!"); return -RT_ENOMEM; } rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); req.cmd = &cmd; req.data = &data; cmd.cmd_code = SEND_CID; cmd.arg = 0; /* NOTE HACK: the RESP_SPI_R1 is always correct here, but we * rely on callers to never use this with "native" calls for reading * CSD or CID. Native versions of those commands use the R2 type, * not R1 plus a data block. */ cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC; data.blksize = 16; data.blks = 1; data.flags = DATA_DIR_READ; data.buf = buf; /* * The spec states that CSR and CID accesses have a timeout * of 64 clock cycles. */ data.timeout_ns = 0; data.timeout_clks = 64; mmcsd_send_request(host, &req); if (cmd.err || data.err) { rt_free(buf); return -RT_ERROR; } for (i = 0;i < 4;i++) cid[i] = buf[i]; rt_free(buf); return 0; } rt_int32_t mmcsd_get_csd(struct rt_mmcsd_card *card, rt_uint32_t *csd) { rt_int32_t err, i; struct rt_mmcsd_req req; struct rt_mmcsd_cmd cmd; struct rt_mmcsd_data data; rt_uint32_t *buf = RT_NULL; if (!controller_is_spi(card->host)) { rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SEND_CSD; cmd.arg = card->rca << 16; cmd.flags = RESP_R2 | CMD_AC; err = mmcsd_send_cmd(card->host, &cmd, 3); if (err) return err; rt_memcpy(csd, cmd.resp, sizeof(rt_uint32_t) * 4); return 0; } buf = (rt_uint32_t*)rt_malloc(16); if (!buf) { LOG_E("allocate memory failed!"); return -RT_ENOMEM; } rt_memset(&req, 0, sizeof(struct rt_mmcsd_req)); rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); rt_memset(&data, 0, sizeof(struct rt_mmcsd_data)); req.cmd = &cmd; req.data = &data; cmd.cmd_code = SEND_CSD; cmd.arg = 0; /* NOTE HACK: the RESP_SPI_R1 is always correct here, but we * rely on callers to never use this with "native" calls for reading * CSD or CID. Native versions of those commands use the R2 type, * not R1 plus a data block. */ cmd.flags = RESP_SPI_R1 | RESP_R1 | CMD_ADTC; data.blksize = 16; data.blks = 1; data.flags = DATA_DIR_READ; data.buf = buf; /* * The spec states that CSR and CID accesses have a timeout * of 64 clock cycles. */ data.timeout_ns = 0; data.timeout_clks = 64; mmcsd_send_request(card->host, &req); if (cmd.err || data.err) { rt_free(buf); return -RT_ERROR; } for (i = 0;i < 4;i++) csd[i] = buf[i]; rt_free(buf); return 0; } static rt_int32_t _mmcsd_select_card(struct rt_mmcsd_host *host, struct rt_mmcsd_card *card) { rt_int32_t err; struct rt_mmcsd_cmd cmd; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SELECT_CARD; if (card) { cmd.arg = card->rca << 16; cmd.flags = RESP_R1 | CMD_AC; } else { cmd.arg = 0; cmd.flags = RESP_NONE | CMD_AC; } err = mmcsd_send_cmd(host, &cmd, 3); if (err) return err; return 0; } rt_int32_t mmcsd_select_card(struct rt_mmcsd_card *card) { return _mmcsd_select_card(card->host, card); } rt_int32_t mmcsd_deselect_cards(struct rt_mmcsd_card *card) { return _mmcsd_select_card(card->host, RT_NULL); } rt_int32_t mmcsd_spi_use_crc(struct rt_mmcsd_host *host, rt_int32_t use_crc) { struct rt_mmcsd_cmd cmd; rt_int32_t err; rt_memset(&cmd, 0, sizeof(struct rt_mmcsd_cmd)); cmd.cmd_code = SPI_CRC_ON_OFF; cmd.flags = RESP_SPI_R1; cmd.arg = use_crc; err = mmcsd_send_cmd(host, &cmd, 0); if (!err) host->spi_use_crc = use_crc; return err; } rt_inline void mmcsd_set_iocfg(struct rt_mmcsd_host *host) { struct rt_mmcsd_io_cfg *io_cfg = &host->io_cfg; mmcsd_dbg("clock %uHz busmode %u powermode %u cs %u Vdd %u " "width %u \n", io_cfg->clock, io_cfg->bus_mode, io_cfg->power_mode, io_cfg->chip_select, io_cfg->vdd, io_cfg->bus_width); host->ops->set_iocfg(host, io_cfg); } /* * Control chip select pin on a host. */ void mmcsd_set_chip_select(struct rt_mmcsd_host *host, rt_int32_t mode) { host->io_cfg.chip_select = mode; mmcsd_set_iocfg(host); } /* * Sets the host clock to the highest possible frequency that * is below "hz". */ void mmcsd_set_clock(struct rt_mmcsd_host *host, rt_uint32_t clk) { if (clk < host->freq_min) { LOG_W("clock too low!"); } host->io_cfg.clock = clk; mmcsd_set_iocfg(host); } /* * Change the bus mode (open drain/push-pull) of a host. */ void mmcsd_set_bus_mode(struct rt_mmcsd_host *host, rt_uint32_t mode) { host->io_cfg.bus_mode = mode; mmcsd_set_iocfg(host); } /* * Change data bus width of a host. */ void mmcsd_set_bus_width(struct rt_mmcsd_host *host, rt_uint32_t width) { host->io_cfg.bus_width = width; mmcsd_set_iocfg(host); } void mmcsd_set_data_timeout(struct rt_mmcsd_data *data, const struct rt_mmcsd_card *card) { rt_uint32_t mult; if (card->card_type == CARD_TYPE_SDIO) { data->timeout_ns = 1000000000; /* SDIO card 1s */ data->timeout_clks = 0; return; } /* * SD cards use a 100 multiplier rather than 10 */ mult = (card->card_type == CARD_TYPE_SD) ? 100 : 10; /* * Scale up the multiplier (and therefore the timeout) by * the r2w factor for writes. */ if (data->flags & DATA_DIR_WRITE) mult <<= card->csd.r2w_factor; data->timeout_ns = card->tacc_ns * mult; data->timeout_clks = card->tacc_clks * mult; /* * SD cards also have an upper limit on the timeout. */ if (card->card_type == CARD_TYPE_SD) { rt_uint32_t timeout_us, limit_us; timeout_us = data->timeout_ns / 1000; timeout_us += data->timeout_clks * 1000 / (card->host->io_cfg.clock / 1000); if (data->flags & DATA_DIR_WRITE) /* * The limit is really 250 ms, but that is * insufficient for some crappy cards. */ limit_us = 300000; else limit_us = 100000; /* * SDHC cards always use these fixed values. */ if (timeout_us > limit_us || card->flags & CARD_FLAG_SDHC) { data->timeout_ns = limit_us * 1000; /* SDHC card fixed 250ms */ data->timeout_clks = 0; } } if (controller_is_spi(card->host)) { if (data->flags & DATA_DIR_WRITE) { if (data->timeout_ns < 1000000000) data->timeout_ns = 1000000000; /* 1s */ } else { if (data->timeout_ns < 100000000) data->timeout_ns = 100000000; /* 100ms */ } } } /* * Mask off any voltages we don't support and select * the lowest voltage */ rt_uint32_t mmcsd_select_voltage(struct rt_mmcsd_host *host, rt_uint32_t ocr) { int bit; extern int __rt_ffs(int value); ocr &= host->valid_ocr; bit = __rt_ffs(ocr); if (bit) { bit -= 1; ocr &= 3 << bit; host->io_cfg.vdd = bit; mmcsd_set_iocfg(host); } else { LOG_W("host doesn't support card's voltages!"); ocr = 0; } return ocr; } static void mmcsd_power_up(struct rt_mmcsd_host *host) { int bit = __rt_fls(host->valid_ocr) - 1; host->io_cfg.vdd = bit; if (controller_is_spi(host)) { host->io_cfg.chip_select = MMCSD_CS_HIGH; host->io_cfg.bus_mode = MMCSD_BUSMODE_PUSHPULL; } else { host->io_cfg.chip_select = MMCSD_CS_IGNORE; host->io_cfg.bus_mode = MMCSD_BUSMODE_OPENDRAIN; } host->io_cfg.power_mode = MMCSD_POWER_UP; host->io_cfg.bus_width = MMCSD_BUS_WIDTH_1; mmcsd_set_iocfg(host); /* * This delay should be sufficient to allow the power supply * to reach the minimum voltage. */ mmcsd_delay_ms(10); host->io_cfg.clock = host->freq_min; host->io_cfg.power_mode = MMCSD_POWER_ON; mmcsd_set_iocfg(host); /* * This delay must be at least 74 clock sizes, or 1 ms, or the * time required to reach a stable voltage. */ mmcsd_delay_ms(10); } static void mmcsd_power_off(struct rt_mmcsd_host *host) { host->io_cfg.clock = 0; host->io_cfg.vdd = 0; if (!controller_is_spi(host)) { host->io_cfg.bus_mode = MMCSD_BUSMODE_OPENDRAIN; host->io_cfg.chip_select = MMCSD_CS_IGNORE; } host->io_cfg.power_mode = MMCSD_POWER_OFF; host->io_cfg.bus_width = MMCSD_BUS_WIDTH_1; mmcsd_set_iocfg(host); } int mmcsd_wait_cd_changed(rt_int32_t timeout) { struct rt_mmcsd_host *host; if (rt_mb_recv(&mmcsd_hotpluge_mb, (rt_ubase_t *)&host, timeout) == RT_EOK) { if(host->card == RT_NULL) { return MMCSD_HOST_UNPLUGED; } else { return MMCSD_HOST_PLUGED; } } return -RT_ETIMEOUT; } RTM_EXPORT(mmcsd_wait_cd_changed); void mmcsd_change(struct rt_mmcsd_host *host) { rt_mb_send(&mmcsd_detect_mb, (rt_ubase_t)host); } void mmcsd_detect(void *param) { struct rt_mmcsd_host *host; rt_uint32_t ocr; rt_int32_t err; while (1) { if (rt_mb_recv(&mmcsd_detect_mb, (rt_ubase_t *)&host, RT_WAITING_FOREVER) == RT_EOK) { if (host->card == RT_NULL) { mmcsd_host_lock(host); mmcsd_power_up(host); mmcsd_go_idle(host); mmcsd_send_if_cond(host, host->valid_ocr); err = sdio_io_send_op_cond(host, 0, &ocr); if (!err) { if (init_sdio(host, ocr)) mmcsd_power_off(host); mmcsd_host_unlock(host); continue; } /* * detect SD card */ err = mmcsd_send_app_op_cond(host, 0, &ocr); if (!err) { if (init_sd(host, ocr)) mmcsd_power_off(host); mmcsd_host_unlock(host); rt_mb_send(&mmcsd_hotpluge_mb, (rt_ubase_t)host); continue; } /* * detect mmc card */ err = mmc_send_op_cond(host, 0, &ocr); if (!err) { if (init_mmc(host, ocr)) mmcsd_power_off(host); mmcsd_host_unlock(host); rt_mb_send(&mmcsd_hotpluge_mb, (rt_ubase_t)host); continue; } mmcsd_host_unlock(host); } else { /* card removed */ mmcsd_host_lock(host); if (host->card->sdio_function_num != 0) { LOG_W("unsupport sdio card plug out!"); } else { rt_mmcsd_blk_remove(host->card); rt_free(host->card); host->card = RT_NULL; } mmcsd_host_unlock(host); rt_mb_send(&mmcsd_hotpluge_mb, (rt_ubase_t)host); } } } } struct rt_mmcsd_host *mmcsd_alloc_host(void) { struct rt_mmcsd_host *host; host = rt_malloc(sizeof(struct rt_mmcsd_host)); if (!host) { LOG_E("alloc host failed"); return RT_NULL; } rt_memset(host, 0, sizeof(struct rt_mmcsd_host)); host->max_seg_size = 65535; host->max_dma_segs = 1; host->max_blk_size = 512; host->max_blk_count = 4096; rt_mutex_init(&host->bus_lock, "sd_bus_lock", RT_IPC_FLAG_PRIO); rt_sem_init(&host->sem_ack, "sd_ack", 0, RT_IPC_FLAG_FIFO); return host; } void mmcsd_free_host(struct rt_mmcsd_host *host) { rt_mutex_detach(&host->bus_lock); rt_sem_detach(&host->sem_ack); rt_free(host); } int rt_mmcsd_core_init(void) { rt_err_t ret; /* initialize detect SD cart thread */ /* initialize mailbox and create detect SD card thread */ ret = rt_mb_init(&mmcsd_detect_mb, "mmcsdmb", &mmcsd_detect_mb_pool[0], sizeof(mmcsd_detect_mb_pool) / sizeof(mmcsd_detect_mb_pool[0]), RT_IPC_FLAG_FIFO); RT_ASSERT(ret == RT_EOK); ret = rt_mb_init(&mmcsd_hotpluge_mb, "mmcsdhotplugmb", &mmcsd_hotpluge_mb_pool[0], sizeof(mmcsd_hotpluge_mb_pool) / sizeof(mmcsd_hotpluge_mb_pool[0]), RT_IPC_FLAG_FIFO); RT_ASSERT(ret == RT_EOK); ret = rt_thread_init(&mmcsd_detect_thread, "mmcsd_detect", mmcsd_detect, RT_NULL, &mmcsd_stack[0], RT_MMCSD_STACK_SIZE, RT_MMCSD_THREAD_PREORITY, 20); if (ret == RT_EOK) { rt_thread_startup(&mmcsd_detect_thread); } rt_sdio_init(); return 0; } INIT_PREV_EXPORT(rt_mmcsd_core_init);