/* * Copyright (c) 2006-2018, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2013-07-20 Bernard first version */ #include #include #include #include #include "interrupt.h" #include "mm_aspace.h" #define DBG_TAG "libcpu.trap" #define DBG_LVL DBG_LOG #include #ifdef RT_USING_FINSH extern long list_thread(void); #endif #ifdef RT_USING_LWP #include #include #ifdef LWP_USING_CORE_DUMP #include #endif static void _check_fault(struct rt_hw_exp_stack *regs, uint32_t pc_adj, char *info) { uint32_t mode = regs->cpsr; if ((mode & 0x1f) == 0x00) { rt_kprintf("%s! pc = 0x%x\n", info, regs->pc - pc_adj); /* user stack backtrace */ #ifdef RT_USING_LWP { rt_thread_t th; th = rt_thread_self(); if (th && th->lwp) { arch_backtrace_uthread(th); } } #endif #ifdef LWP_USING_CORE_DUMP lwp_core_dump(regs, pc_adj); #endif sys_exit_group(-1); } else { /* user stack backtrace */ #ifdef RT_USING_LWP { rt_thread_t th; th = rt_thread_self(); if (th && th->lwp) { arch_backtrace_uthread(th); } } #endif /* kernel stack backtrace */ struct rt_hw_backtrace_frame frame = { .fp = regs->x29, .pc = regs->pc }; rt_backtrace_frame(&frame); } } rt_inline int _get_type(unsigned long esr) { int ret; int fsc = esr & 0x3f; switch (fsc) { case 0x4: case 0x5: case 0x6: case 0x7: ret = MM_FAULT_TYPE_PAGE_FAULT; break; case 0xc: case 0xd: case 0xe: case 0xf: ret = MM_FAULT_TYPE_ACCESS_FAULT; break; case 0x8: case 0x9: case 0xa: case 0xb: /* access flag fault */ default: ret = MM_FAULT_TYPE_GENERIC; } return ret; } rt_inline long _irq_is_disable(long cpsr) { return !!(cpsr & 0x80); } static int user_fault_fixable(unsigned long esr, struct rt_hw_exp_stack *regs) { rt_ubase_t level; unsigned char ec; void *dfar; int ret = 0; ec = (unsigned char)((esr >> 26) & 0x3fU); enum rt_mm_fault_op fault_op; enum rt_mm_fault_type fault_type; struct rt_lwp *lwp; switch (ec) { case 0x20: fault_op = MM_FAULT_OP_EXECUTE; fault_type = _get_type(esr); break; case 0x21: case 0x24: case 0x25: fault_op = MM_FAULT_OP_WRITE; fault_type = _get_type(esr); break; default: fault_op = 0; break; } /* page fault exception only allow from user space */ lwp = lwp_self(); if (lwp && fault_op) { __asm__ volatile("mrs %0, far_el1":"=r"(dfar)); struct rt_aspace_fault_msg msg = { .fault_op = fault_op, .fault_type = fault_type, .fault_vaddr = dfar, }; lwp_user_setting_save(rt_thread_self()); __asm__ volatile("mrs %0, daif\nmsr daifclr, 0x3\nisb\n":"=r"(level)); if (rt_aspace_fault_try_fix(lwp->aspace, &msg)) { ret = 1; } __asm__ volatile("msr daif, %0\nisb\n"::"r"(level)); } return ret; } #endif /** * this function will show registers of CPU * * @param regs the registers point */ void rt_hw_show_register(struct rt_hw_exp_stack *regs) { rt_kprintf("Execption:\n"); rt_kprintf("X00:0x%16.16p X01:0x%16.16p X02:0x%16.16p X03:0x%16.16p\n", (void *)regs->x0, (void *)regs->x1, (void *)regs->x2, (void *)regs->x3); rt_kprintf("X04:0x%16.16p X05:0x%16.16p X06:0x%16.16p X07:0x%16.16p\n", (void *)regs->x4, (void *)regs->x5, (void *)regs->x6, (void *)regs->x7); rt_kprintf("X08:0x%16.16p X09:0x%16.16p X10:0x%16.16p X11:0x%16.16p\n", (void *)regs->x8, (void *)regs->x9, (void *)regs->x10, (void *)regs->x11); rt_kprintf("X12:0x%16.16p X13:0x%16.16p X14:0x%16.16p X15:0x%16.16p\n", (void *)regs->x12, (void *)regs->x13, (void *)regs->x14, (void *)regs->x15); rt_kprintf("X16:0x%16.16p X17:0x%16.16p X18:0x%16.16p X19:0x%16.16p\n", (void *)regs->x16, (void *)regs->x17, (void *)regs->x18, (void *)regs->x19); rt_kprintf("X20:0x%16.16p X21:0x%16.16p X22:0x%16.16p X23:0x%16.16p\n", (void *)regs->x20, (void *)regs->x21, (void *)regs->x22, (void *)regs->x23); rt_kprintf("X24:0x%16.16p X25:0x%16.16p X26:0x%16.16p X27:0x%16.16p\n", (void *)regs->x24, (void *)regs->x25, (void *)regs->x26, (void *)regs->x27); rt_kprintf("X28:0x%16.16p X29:0x%16.16p X30:0x%16.16p\n", (void *)regs->x28, (void *)regs->x29, (void *)regs->x30); rt_kprintf("SP_EL0:0x%16.16p\n", (void *)regs->sp_el0); rt_kprintf("SPSR :0x%16.16p\n", (void *)regs->cpsr); rt_kprintf("EPC :0x%16.16p\n", (void *)regs->pc); } void rt_hw_trap_irq(void) { #ifdef SOC_BCM283x extern rt_uint8_t core_timer_flag; void *param; uint32_t irq; rt_isr_handler_t isr_func; extern struct rt_irq_desc isr_table[]; uint32_t value = 0; value = IRQ_PEND_BASIC & 0x3ff; if(core_timer_flag != 0) { uint32_t cpu_id = rt_hw_cpu_id(); uint32_t int_source = CORE_IRQSOURCE(cpu_id); if (int_source & 0x0f) { if (int_source & 0x08) { isr_func = isr_table[IRQ_ARM_TIMER].handler; #ifdef RT_USING_INTERRUPT_INFO isr_table[IRQ_ARM_TIMER].counter++; #endif if (isr_func) { param = isr_table[IRQ_ARM_TIMER].param; isr_func(IRQ_ARM_TIMER, param); } } } } /* local interrupt*/ if (value) { if (value & (1 << 8)) { value = IRQ_PEND1; irq = __rt_ffs(value) - 1; } else if (value & (1 << 9)) { value = IRQ_PEND2; irq = __rt_ffs(value) + 31; } else { value &= 0x0f; irq = __rt_ffs(value) + 63; } /* get interrupt service routine */ isr_func = isr_table[irq].handler; #ifdef RT_USING_INTERRUPT_INFO isr_table[irq].counter++; #endif if (isr_func) { /* Interrupt for myself. */ param = isr_table[irq].param; /* turn to interrupt service routine */ isr_func(irq, param); } } #else void *param; int ir, ir_self; rt_isr_handler_t isr_func; extern struct rt_irq_desc isr_table[]; ir = rt_hw_interrupt_get_irq(); if (ir == 1023) { /* Spurious interrupt */ return; } /* bit 10~12 is cpuid, bit 0~9 is interrupt id */ ir_self = ir & 0x3ffUL; /* get interrupt service routine */ isr_func = isr_table[ir_self].handler; #ifdef RT_USING_INTERRUPT_INFO isr_table[ir_self].counter++; #ifdef RT_USING_SMP isr_table[ir_self].cpu_counter[rt_hw_cpu_id()]++; #endif #endif if (isr_func) { /* Interrupt for myself. */ param = isr_table[ir_self].param; /* turn to interrupt service routine */ isr_func(ir_self, param); } /* end of interrupt */ rt_hw_interrupt_ack(ir); #endif } #ifdef RT_USING_SMART #define DBG_CHECK_EVENT(regs, esr) dbg_check_event(regs, esr) #else #define DBG_CHECK_EVENT(regs, esr) (0) #endif void rt_hw_trap_fiq(void) { void *param; int ir, ir_self; rt_isr_handler_t isr_func; extern struct rt_irq_desc isr_table[]; ir = rt_hw_interrupt_get_irq(); /* bit 10~12 is cpuid, bit 0~9 is interrup id */ ir_self = ir & 0x3ffUL; /* get interrupt service routine */ isr_func = isr_table[ir_self].handler; param = isr_table[ir_self].param; /* turn to interrupt service routine */ isr_func(ir_self, param); /* end of interrupt */ rt_hw_interrupt_ack(ir); } void print_exception(unsigned long esr, unsigned long epc); void SVC_Handler(struct rt_hw_exp_stack *regs); void rt_hw_trap_exception(struct rt_hw_exp_stack *regs) { unsigned long esr; unsigned char ec; asm volatile("mrs %0, esr_el1":"=r"(esr)); ec = (unsigned char)((esr >> 26) & 0x3fU); if (DBG_CHECK_EVENT(regs, esr)) { return; } else if (ec == 0x15) /* is 64bit syscall ? */ { SVC_Handler(regs); /* never return here */ } #ifdef RT_USING_SMART /** * Note: check_user_stack will take lock and it will possibly be a dead-lock * if exception comes from kernel. */ if ((regs->cpsr & 0x1f) == 0) { if (user_fault_fixable(esr, regs)) return; } else { if (_irq_is_disable(regs->cpsr)) { LOG_E("Kernel fault from interrupt/critical section"); } if (rt_critical_level() != 0) { LOG_E("scheduler is not available"); } else if (user_fault_fixable(esr, regs)) return; } #endif print_exception(esr, regs->pc); rt_hw_show_register(regs); LOG_E("current thread: %s\n", rt_thread_self()->parent.name); #ifdef RT_USING_FINSH list_thread(); #endif #ifdef RT_USING_LWP _check_fault(regs, 0, "user fault"); #endif struct rt_hw_backtrace_frame frame = {.fp = regs->x29, .pc = regs->pc}; rt_backtrace_frame(&frame); rt_hw_cpu_shutdown(); } void rt_hw_trap_serror(struct rt_hw_exp_stack *regs) { rt_kprintf("SError\n"); rt_hw_show_register(regs); rt_kprintf("current: %s\n", rt_thread_self()->parent.name); #ifdef RT_USING_FINSH list_thread(); #endif rt_hw_cpu_shutdown(); }