/***************************************************************************//** * @file * @brief Analog to Digital Converter (ADC) peripheral API * @author Energy Micro AS * @version 3.0.0 ******************************************************************************* * @section License * (C) Copyright 2012 Energy Micro AS, http://www.energymicro.com ******************************************************************************* * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * * DISCLAIMER OF WARRANTY/LIMITATION OF REMEDIES: Energy Micro AS has no * obligation to support this Software. Energy Micro AS is providing the * Software "AS IS", with no express or implied warranties of any kind, * including, but not limited to, any implied warranties of merchantability * or fitness for any particular purpose or warranties against infringement * of any proprietary rights of a third party. * * Energy Micro AS will not be liable for any consequential, incidental, or * special damages, or any other relief, or for any claim by any third party, * arising from your use of this Software. * ******************************************************************************/ #ifndef __EM_ADC_H #define __EM_ADC_H #include #include "em_part.h" #ifdef __cplusplus extern "C" { #endif /***************************************************************************//** * @addtogroup EM_Library * @{ ******************************************************************************/ /***************************************************************************//** * @addtogroup ADC * @{ ******************************************************************************/ /******************************************************************************* ******************************** ENUMS ************************************ ******************************************************************************/ /** Acquisition time (in ADC clock cycles). */ typedef enum { adcAcqTime1 = _ADC_SINGLECTRL_AT_1CYCLE, /**< 1 clock cycle. */ adcAcqTime2 = _ADC_SINGLECTRL_AT_2CYCLES, /**< 2 clock cycles. */ adcAcqTime4 = _ADC_SINGLECTRL_AT_4CYCLES, /**< 4 clock cycles. */ adcAcqTime8 = _ADC_SINGLECTRL_AT_8CYCLES, /**< 8 clock cycles. */ adcAcqTime16 = _ADC_SINGLECTRL_AT_16CYCLES, /**< 16 clock cycles. */ adcAcqTime32 = _ADC_SINGLECTRL_AT_32CYCLES, /**< 32 clock cycles. */ adcAcqTime64 = _ADC_SINGLECTRL_AT_64CYCLES, /**< 64 clock cycles. */ adcAcqTime128 = _ADC_SINGLECTRL_AT_128CYCLES, /**< 128 clock cycles. */ adcAcqTime256 = _ADC_SINGLECTRL_AT_256CYCLES /**< 256 clock cycles. */ } ADC_AcqTime_TypeDef; /** Lowpass filter mode. */ typedef enum { /** No filter or decoupling capacitor. */ adcLPFilterBypass = _ADC_CTRL_LPFMODE_BYPASS, /** On-chip RC filter. */ adcLPFilterRC = _ADC_CTRL_LPFMODE_RCFILT, /** On-chip decoupling capacitor. */ adcLPFilterDeCap = _ADC_CTRL_LPFMODE_DECAP } ADC_LPFilter_TypeDef; /** Oversample rate select. */ typedef enum { /** 2 samples per conversion result. */ adcOvsRateSel2 = _ADC_CTRL_OVSRSEL_X2, /** 4 samples per conversion result. */ adcOvsRateSel4 = _ADC_CTRL_OVSRSEL_X4, /** 8 samples per conversion result. */ adcOvsRateSel8 = _ADC_CTRL_OVSRSEL_X8, /** 16 samples per conversion result. */ adcOvsRateSel16 = _ADC_CTRL_OVSRSEL_X16, /** 32 samples per conversion result. */ adcOvsRateSel32 = _ADC_CTRL_OVSRSEL_X32, /** 64 samples per conversion result. */ adcOvsRateSel64 = _ADC_CTRL_OVSRSEL_X64, /** 128 samples per conversion result. */ adcOvsRateSel128 = _ADC_CTRL_OVSRSEL_X128, /** 256 samples per conversion result. */ adcOvsRateSel256 = _ADC_CTRL_OVSRSEL_X256, /** 512 samples per conversion result. */ adcOvsRateSel512 = _ADC_CTRL_OVSRSEL_X512, /** 1024 samples per conversion result. */ adcOvsRateSel1024 = _ADC_CTRL_OVSRSEL_X1024, /** 2048 samples per conversion result. */ adcOvsRateSel2048 = _ADC_CTRL_OVSRSEL_X2048, /** 4096 samples per conversion result. */ adcOvsRateSel4096 = _ADC_CTRL_OVSRSEL_X4096 } ADC_OvsRateSel_TypeDef; /** Peripheral Reflex System signal used to trigger single sample. */ typedef enum { adcPRSSELCh0 = _ADC_SINGLECTRL_PRSSEL_PRSCH0, /**< PRS channel 0. */ adcPRSSELCh1 = _ADC_SINGLECTRL_PRSSEL_PRSCH1, /**< PRS channel 1. */ adcPRSSELCh2 = _ADC_SINGLECTRL_PRSSEL_PRSCH2, /**< PRS channel 2. */ adcPRSSELCh3 = _ADC_SINGLECTRL_PRSSEL_PRSCH3, /**< PRS channel 3. */ adcPRSSELCh4 = _ADC_SINGLECTRL_PRSSEL_PRSCH4, /**< PRS channel 4. */ adcPRSSELCh5 = _ADC_SINGLECTRL_PRSSEL_PRSCH5, /**< PRS channel 5. */ adcPRSSELCh6 = _ADC_SINGLECTRL_PRSSEL_PRSCH6, /**< PRS channel 6. */ adcPRSSELCh7 = _ADC_SINGLECTRL_PRSSEL_PRSCH7 /**< PRS channel 7. */ } ADC_PRSSEL_TypeDef; /** Reference to ADC sample. */ typedef enum { /** Internal 1.25V reference. */ adcRef1V25 = _ADC_SINGLECTRL_REF_1V25, /** Internal 2.5V reference. */ adcRef2V5 = _ADC_SINGLECTRL_REF_2V5, /** Buffered VDD. */ adcRefVDD = _ADC_SINGLECTRL_REF_VDD, /** Internal differential 5V reference. */ adcRef5VDIFF = _ADC_SINGLECTRL_REF_5VDIFF, /** Single ended ext. ref. from pin 6. */ adcRefExtSingle = _ADC_SINGLECTRL_REF_EXTSINGLE, /** Differential ext. ref. from pin 6 and 7. */ adcRef2xExtDiff = _ADC_SINGLECTRL_REF_2XEXTDIFF, /** Unbuffered 2xVDD. */ adcRef2xVDD = _ADC_SINGLECTRL_REF_2XVDD } ADC_Ref_TypeDef; /** Sample resolution. */ typedef enum { adcRes12Bit = _ADC_SINGLECTRL_RES_12BIT, /**< 12 bit sampling. */ adcRes8Bit = _ADC_SINGLECTRL_RES_8BIT, /**< 8 bit sampling. */ adcRes6Bit = _ADC_SINGLECTRL_RES_6BIT, /**< 6 bit sampling. */ adcResOVS = _ADC_SINGLECTRL_RES_OVS /**< Oversampling. */ } ADC_Res_TypeDef; /** Single sample input selection. */ typedef enum { /* Differential mode disabled */ adcSingleInpCh0 = _ADC_SINGLECTRL_INPUTSEL_CH0, /**< Channel 0. */ adcSingleInpCh1 = _ADC_SINGLECTRL_INPUTSEL_CH1, /**< Channel 1. */ adcSingleInpCh2 = _ADC_SINGLECTRL_INPUTSEL_CH2, /**< Channel 2. */ adcSingleInpCh3 = _ADC_SINGLECTRL_INPUTSEL_CH3, /**< Channel 3. */ adcSingleInpCh4 = _ADC_SINGLECTRL_INPUTSEL_CH4, /**< Channel 4. */ adcSingleInpCh5 = _ADC_SINGLECTRL_INPUTSEL_CH5, /**< Channel 5. */ adcSingleInpCh6 = _ADC_SINGLECTRL_INPUTSEL_CH6, /**< Channel 6. */ adcSingleInpCh7 = _ADC_SINGLECTRL_INPUTSEL_CH7, /**< Channel 7. */ adcSingleInpTemp = _ADC_SINGLECTRL_INPUTSEL_TEMP, /**< Temperature reference. */ adcSingleInpVDDDiv3 = _ADC_SINGLECTRL_INPUTSEL_VDDDIV3, /**< VDD divided by 3. */ adcSingleInpVDD = _ADC_SINGLECTRL_INPUTSEL_VDD, /**< VDD. */ adcSingleInpVSS = _ADC_SINGLECTRL_INPUTSEL_VSS, /**< VSS. */ adcSingleInpVrefDiv2 = _ADC_SINGLECTRL_INPUTSEL_VREFDIV2, /**< Vref divided by 2. */ adcSingleInpDACOut0 = _ADC_SINGLECTRL_INPUTSEL_DAC0OUT0, /**< DAC output 0. */ adcSingleInpDACOut1 = _ADC_SINGLECTRL_INPUTSEL_DAC0OUT1, /**< DAC output 1. */ /* TBD: Use define when available */ adcSingleInpATEST = 15, /**< ATEST. */ /* Differential mode enabled */ adcSingleInpCh0Ch1 = _ADC_SINGLECTRL_INPUTSEL_CH0CH1, /**< Positive Ch0, negative Ch1. */ adcSingleInpCh2Ch3 = _ADC_SINGLECTRL_INPUTSEL_CH2CH3, /**< Positive Ch2, negative Ch3. */ adcSingleInpCh4Ch5 = _ADC_SINGLECTRL_INPUTSEL_CH4CH5, /**< Positive Ch4, negative Ch5. */ adcSingleInpCh6Ch7 = _ADC_SINGLECTRL_INPUTSEL_CH6CH7, /**< Positive Ch6, negative Ch7. */ /* TBD: Use define when available */ adcSingleInpDiff0 = 4 /**< Differential 0. */ } ADC_SingleInput_TypeDef; /** Acquisition time (in ADC clock cycles). */ typedef enum { /** Start single conversion. */ adcStartSingle = ADC_CMD_SINGLESTART, /** Start scan sequence. */ adcStartScan = ADC_CMD_SCANSTART, /** * Start scan sequence and single conversion, typically used when tailgating * single conversion after scan sequence. */ adcStartScanAndSingle = ADC_CMD_SCANSTART | ADC_CMD_SINGLESTART } ADC_Start_TypeDef; /** Warm-up mode. */ typedef enum { /** ADC shutdown after each conversion. */ adcWarmupNormal = _ADC_CTRL_WARMUPMODE_NORMAL, /** Do not warm-up bandgap references. */ adcWarmupFastBG = _ADC_CTRL_WARMUPMODE_FASTBG, /** Reference selected for scan mode kept warm.*/ adcWarmupKeepScanRefWarm = _ADC_CTRL_WARMUPMODE_KEEPSCANREFWARM, /** ADC and reference selected for scan mode kept warm.*/ adcWarmupKeepADCWarm = _ADC_CTRL_WARMUPMODE_KEEPADCWARM } ADC_Warmup_TypeDef; /******************************************************************************* ******************************* STRUCTS *********************************** ******************************************************************************/ /** ADC init structure, common for single conversion and scan sequence. */ typedef struct { /** * Oversampling rate select. In order to have any effect, oversampling must * be enabled for single/scan mode. */ ADC_OvsRateSel_TypeDef ovsRateSel; /** Lowpass or decoupling capacitor filter to use. */ ADC_LPFilter_TypeDef lpfMode; /** Warm-up mode to use for ADC. */ ADC_Warmup_TypeDef warmUpMode; /** * Timebase used for ADC warm up. Select N to give (N+1)HFPERCLK cycles. * (Additional delay is added for bandgap references, please refer to the * reference manual.) Normally, N should be selected so that the timebase * is at least 1 us. See ADC_TimebaseCalc() for a way to obtain * a suggested timebase of at least 1 us. */ uint8_t timebase; /** Clock division factor N, ADC clock = HFPERCLK / (N + 1). */ uint8_t prescale; /** Enable/disable conversion tailgating. */ bool tailgate; } ADC_Init_TypeDef; /** Default config for ADC init structure. */ #define ADC_INIT_DEFAULT \ { adcOvsRateSel2, /* 2x oversampling (if enabled). */ \ adcLPFilterBypass, /* No input filter selected. */ \ adcWarmupNormal, /* ADC shutdown after each conversion. */ \ _ADC_CTRL_TIMEBASE_DEFAULT, /* Use HW default value. */ \ _ADC_CTRL_PRESC_DEFAULT, /* Use HW default value. */ \ false /* Do not use tailgate. */ \ } /** Scan sequence init structure. */ typedef struct { /** * Peripheral reflex system trigger selection. Only applicable if @p prsEnable * is enabled. */ ADC_PRSSEL_TypeDef prsSel; /** Acquisition time (in ADC clock cycles). */ ADC_AcqTime_TypeDef acqTime; /** * Sample reference selection. Notice that for external references, the * ADC calibration register must be set explicitly. */ ADC_Ref_TypeDef reference; /** Sample resolution. */ ADC_Res_TypeDef resolution; /** * Input scan selection. If single ended (@p diff is false), use logical * combination of ADC_SCANCTRL_INPUTMASK_CHx defines. If differential input * (@p diff is true), use logical combination of ADC_SCANCTRL_INPUTMASK_CHxCHy * defines. (Notice underscore prefix for defines used.) */ uint32_t input; /** Select if single ended or differential input. */ bool diff; /** Peripheral reflex system trigger enable. */ bool prsEnable; /** Select if left adjustment should be done. */ bool leftAdjust; /** Select if continuous conversion until explicit stop. */ bool rep; } ADC_InitScan_TypeDef; /** Default config for ADC scan init structure. */ #define ADC_INITSCAN_DEFAULT \ { adcPRSSELCh0, /* PRS ch0 (if enabled). */ \ adcAcqTime1, /* 1 ADC_CLK cycle acquisition time. */ \ adcRef1V25, /* 1.25V internal reference. */ \ adcRes12Bit, /* 12 bit resolution. */ \ 0, /* No input selected. */ \ false, /* Single ended input. */ \ false, /* PRS disabled. */ \ false, /* Right adjust. */ \ false /* Deactivate conversion after one scan sequence. */ \ } /** Single conversion init structure. */ typedef struct { /** * Peripheral reflex system trigger selection. Only applicable if @p prsEnable * is enabled. */ ADC_PRSSEL_TypeDef prsSel; /** Acquisition time (in ADC clock cycles). */ ADC_AcqTime_TypeDef acqTime; /** * Sample reference selection. Notice that for external references, the * ADC calibration register must be set explicitly. */ ADC_Ref_TypeDef reference; /** Sample resolution. */ ADC_Res_TypeDef resolution; /** * Sample input selection, use single ended or differential input according * to setting of @p diff. */ ADC_SingleInput_TypeDef input; /** Select if single ended or differential input. */ bool diff; /** Peripheral reflex system trigger enable. */ bool prsEnable; /** Select if left adjustment should be done. */ bool leftAdjust; /** Select if continuous conversion until explicit stop. */ bool rep; } ADC_InitSingle_TypeDef; /** Default config for ADC single conversion init structure. */ #define ADC_INITSINGLE_DEFAULT \ { adcPRSSELCh0, /* PRS ch0 (if enabled). */ \ adcAcqTime1, /* 1 ADC_CLK cycle acquisition time. */ \ adcRef1V25, /* 1.25V internal reference. */ \ adcRes12Bit, /* 12 bit resolution. */ \ adcSingleInpCh0, /* CH0 input selected. */ \ false, /* Single ended input. */ \ false, /* PRS disabled. */ \ false, /* Right adjust. */ \ false /* Deactivate conversion after one scan sequence. */ \ } /******************************************************************************* ***************************** PROTOTYPES ********************************** ******************************************************************************/ /***************************************************************************//** * @brief * Get single conversion result. * * @note * Do only use if single conversion data valid. * * @param[in] adc * Pointer to ADC peripheral register block. * * @return * ******************************************************************************/ __STATIC_INLINE uint32_t ADC_DataSingleGet(ADC_TypeDef *adc) { return(adc->SINGLEDATA); } /***************************************************************************//** * @brief * Get scan result. * * @note * Do only use if scan data valid. * * @param[in] adc * Pointer to ADC peripheral register block. ******************************************************************************/ __STATIC_INLINE uint32_t ADC_DataScanGet(ADC_TypeDef *adc) { return(adc->SCANDATA); } void ADC_Init(ADC_TypeDef *adc, const ADC_Init_TypeDef *init); void ADC_InitScan(ADC_TypeDef *adc, const ADC_InitScan_TypeDef *init); void ADC_InitSingle(ADC_TypeDef *adc, const ADC_InitSingle_TypeDef *init); /***************************************************************************//** * @brief * Clear one or more pending ADC interrupts. * * @param[in] adc * Pointer to ADC peripheral register block. * * @param[in] flags * Pending ADC interrupt source to clear. Use a bitwise logic OR combination * of valid interrupt flags for the ADC module (ADC_IF_nnn). ******************************************************************************/ __STATIC_INLINE void ADC_IntClear(ADC_TypeDef *adc, uint32_t flags) { adc->IFC = flags; } /***************************************************************************//** * @brief * Disable one or more ADC interrupts. * * @param[in] adc * Pointer to ADC peripheral register block. * * @param[in] flags * ADC interrupt sources to disable. Use a bitwise logic OR combination of * valid interrupt flags for the ADC module (ADC_IF_nnn). ******************************************************************************/ __STATIC_INLINE void ADC_IntDisable(ADC_TypeDef *adc, uint32_t flags) { adc->IEN &= ~(flags); } /***************************************************************************//** * @brief * Enable one or more ADC interrupts. * * @note * Depending on the use, a pending interrupt may already be set prior to * enabling the interrupt. Consider using ADC_IntClear() prior to enabling * if such a pending interrupt should be ignored. * * @param[in] adc * Pointer to ADC peripheral register block. * * @param[in] flags * ADC interrupt sources to enable. Use a bitwise logic OR combination of * valid interrupt flags for the ADC module (ADC_IF_nnn). ******************************************************************************/ __STATIC_INLINE void ADC_IntEnable(ADC_TypeDef *adc, uint32_t flags) { adc->IEN |= flags; } /***************************************************************************//** * @brief * Get pending ADC interrupt flags. * * @note * The event bits are not cleared by the use of this function. * * @param[in] adc * Pointer to ADC peripheral register block. * * @return * ADC interrupt sources pending. A bitwise logic OR combination of valid * interrupt flags for the ADC module (ADC_IF_nnn). ******************************************************************************/ __STATIC_INLINE uint32_t ADC_IntGet(ADC_TypeDef *adc) { return(adc->IF); } /***************************************************************************//** * @brief * Set one or more pending ADC interrupts from SW. * * @param[in] adc * Pointer to ADC peripheral register block. * * @param[in] flags * ADC interrupt sources to set to pending. Use a bitwise logic OR combination * of valid interrupt flags for the ADC module (ADC_IF_nnn). ******************************************************************************/ __STATIC_INLINE void ADC_IntSet(ADC_TypeDef *adc, uint32_t flags) { adc->IFS = flags; } uint8_t ADC_PrescaleCalc(uint32_t adcFreq, uint32_t hfperFreq); /***************************************************************************//** * @brief * Start scan sequence and/or single conversion. * * @param[in] adc * Pointer to ADC peripheral register block. * * @param[in] cmd * Command indicating which type of sampling to start. ******************************************************************************/ __STATIC_INLINE void ADC_Start(ADC_TypeDef *adc, ADC_Start_TypeDef cmd) { adc->CMD = (uint32_t)cmd; } void ADC_Reset(ADC_TypeDef *adc); uint8_t ADC_TimebaseCalc(uint32_t hfperFreq); /** @} (end addtogroup ADC) */ /** @} (end addtogroup EM_Library) */ #ifdef __cplusplus } #endif #endif /* __EM_ADC_H */