/* * The Clear BSD License * Copyright (c) 2015, Freescale Semiconductor, Inc. * Copyright 2016-2017 NXP * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted (subject to the limitations in the disclaimer below) provided * that the following conditions are met: * * o Redistributions of source code must retain the above copyright notice, this list * of conditions and the following disclaimer. * * o Redistributions in binary form must reproduce the above copyright notice, this * list of conditions and the following disclaimer in the documentation and/or * other materials provided with the distribution. * * o Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from this * software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY THIS LICENSE. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "fsl_lpi2c_edma.h" #include #include /******************************************************************************* * Definitions ******************************************************************************/ /* Component ID definition, used by tools. */ #ifndef FSL_COMPONENT_ID #define FSL_COMPONENT_ID "platform.drivers.lpi2c_edma" #endif /* @brief Mask to align an address to 32 bytes. */ #define ALIGN_32_MASK (0x1fU) /*! @brief Common sets of flags used by the driver. */ enum _lpi2c_flag_constants { /*! All flags which are cleared by the driver upon starting a transfer. */ kMasterClearFlags = kLPI2C_MasterEndOfPacketFlag | kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag | kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag | kLPI2C_MasterPinLowTimeoutFlag | kLPI2C_MasterDataMatchFlag, /*! IRQ sources enabled by the non-blocking transactional API. */ kMasterIrqFlags = kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterTxReadyFlag | kLPI2C_MasterRxReadyFlag | kLPI2C_MasterStopDetectFlag | kLPI2C_MasterNackDetectFlag | kLPI2C_MasterPinLowTimeoutFlag | kLPI2C_MasterFifoErrFlag, /*! Errors to check for. */ kMasterErrorFlags = kLPI2C_MasterNackDetectFlag | kLPI2C_MasterArbitrationLostFlag | kLPI2C_MasterFifoErrFlag | kLPI2C_MasterPinLowTimeoutFlag, /*! All flags which are cleared by the driver upon starting a transfer. */ kSlaveClearFlags = kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveBitErrFlag | kLPI2C_SlaveFifoErrFlag, /*! IRQ sources enabled by the non-blocking transactional API. */ kSlaveIrqFlags = kLPI2C_SlaveTxReadyFlag | kLPI2C_SlaveRxReadyFlag | kLPI2C_SlaveStopDetectFlag | kLPI2C_SlaveRepeatedStartDetectFlag | kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag | kLPI2C_SlaveTransmitAckFlag | kLPI2C_SlaveAddressValidFlag, /*! Errors to check for. */ kSlaveErrorFlags = kLPI2C_SlaveFifoErrFlag | kLPI2C_SlaveBitErrFlag, }; /* ! @brief LPI2C master fifo commands. */ enum _lpi2c_master_fifo_cmd { kTxDataCmd = LPI2C_MTDR_CMD(0x0U), /*!< Transmit DATA[7:0] */ kRxDataCmd = LPI2C_MTDR_CMD(0X1U), /*!< Receive (DATA[7:0] + 1) bytes */ kStopCmd = LPI2C_MTDR_CMD(0x2U), /*!< Generate STOP condition */ kStartCmd = LPI2C_MTDR_CMD(0x4U), /*!< Generate(repeated) START and transmit address in DATA[[7:0] */ }; /*! @brief States for the state machine used by transactional APIs. */ enum _lpi2c_transfer_states { kIdleState = 0, kSendCommandState, kIssueReadCommandState, kTransferDataState, kStopState, kWaitForCompletionState, }; /*! @brief Typedef for interrupt handler. */ typedef void (*lpi2c_isr_t)(LPI2C_Type *base, void *handle); /******************************************************************************* * Prototypes ******************************************************************************/ static uint32_t LPI2C_GenerateCommands(lpi2c_master_edma_handle_t *handle); static void LPI2C_MasterEDMACallback(edma_handle_t *dmaHandle, void *userData, bool isTransferDone, uint32_t tcds); /******************************************************************************* * Code ******************************************************************************/ void LPI2C_MasterCreateEDMAHandle(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle, edma_handle_t *rxDmaHandle, edma_handle_t *txDmaHandle, lpi2c_master_edma_transfer_callback_t callback, void *userData) { assert(handle); assert(rxDmaHandle); assert(txDmaHandle); /* Clear out the handle. */ memset(handle, 0, sizeof(*handle)); /* Set up the handle. For combined rx/tx DMA requests, the tx channel handle is set to the rx handle */ /* in order to make the transfer API code simpler. */ handle->base = base; handle->completionCallback = callback; handle->userData = userData; handle->rx = rxDmaHandle; handle->tx = FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base) ? txDmaHandle : rxDmaHandle; /* Set DMA channel completion callbacks. */ EDMA_SetCallback(handle->rx, LPI2C_MasterEDMACallback, handle); if (FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_SetCallback(handle->tx, LPI2C_MasterEDMACallback, handle); } } /*! * @brief Prepares the command buffer with the sequence of commands needed to send the requested transaction. * @param handle Master DMA driver handle. * @return Number of command words. */ static uint32_t LPI2C_GenerateCommands(lpi2c_master_edma_handle_t *handle) { lpi2c_master_transfer_t *xfer = &handle->transfer; uint16_t *cmd = (uint16_t *)&handle->commandBuffer; uint32_t cmdCount = 0; /* Handle no start option. */ if (xfer->flags & kLPI2C_TransferNoStartFlag) { if (xfer->direction == kLPI2C_Read) { /* Need to issue read command first. */ cmd[cmdCount++] = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1); } } else { /* * Initial direction depends on whether a subaddress was provided, and of course the actual * data transfer direction. */ lpi2c_direction_t direction = xfer->subaddressSize ? kLPI2C_Write : xfer->direction; /* Start command. */ cmd[cmdCount++] = (uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)direction); /* Subaddress, MSB first. */ if (xfer->subaddressSize) { uint32_t subaddressRemaining = xfer->subaddressSize; while (subaddressRemaining--) { uint8_t subaddressByte = (xfer->subaddress >> (8 * subaddressRemaining)) & 0xff; cmd[cmdCount++] = subaddressByte; } } /* Reads need special handling because we have to issue a read command and maybe a repeated start. */ if ((xfer->dataSize) && (xfer->direction == kLPI2C_Read)) { /* Need to send repeated start if switching directions to read. */ if (direction == kLPI2C_Write) { cmd[cmdCount++] = (uint16_t)kStartCmd | (uint16_t)((uint16_t)((uint16_t)xfer->slaveAddress << 1U) | (uint16_t)kLPI2C_Read); } /* Read command. */ cmd[cmdCount++] = kRxDataCmd | LPI2C_MTDR_DATA(xfer->dataSize - 1); } } return cmdCount; } status_t LPI2C_MasterTransferEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle, lpi2c_master_transfer_t *transfer) { status_t result; assert(handle); assert(transfer); assert(transfer->subaddressSize <= sizeof(transfer->subaddress)); /* Return busy if another transaction is in progress. */ if (handle->isBusy) { return kStatus_LPI2C_Busy; } /* Return an error if the bus is already in use not by us. */ result = LPI2C_CheckForBusyBus(base); if (result) { return result; } /* We're now busy. */ handle->isBusy = true; /* Disable LPI2C IRQ and DMA sources while we configure stuff. */ LPI2C_MasterDisableInterrupts(base, kMasterIrqFlags); LPI2C_MasterEnableDMA(base, false, false); /* Clear all flags. */ LPI2C_MasterClearStatusFlags(base, kMasterClearFlags); /* Save transfer into handle. */ handle->transfer = *transfer; /* Generate commands to send. */ uint32_t commandCount = LPI2C_GenerateCommands(handle); /* If the user is transmitting no data with no start or stop, then just go ahead and invoke the callback. */ if ((!commandCount) && (transfer->dataSize == 0)) { if (handle->completionCallback) { handle->completionCallback(base, handle, kStatus_Success, handle->userData); } return kStatus_Success; } /* Reset DMA channels. */ EDMA_ResetChannel(handle->rx->base, handle->rx->channel); if (FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_ResetChannel(handle->tx->base, handle->tx->channel); } /* Get a 32-byte aligned TCD pointer. */ edma_tcd_t *tcd = (edma_tcd_t *)((uint32_t)(&handle->tcds[1]) & (~ALIGN_32_MASK)); bool hasSendData = (transfer->direction == kLPI2C_Write) && (transfer->dataSize); bool hasReceiveData = (transfer->direction == kLPI2C_Read) && (transfer->dataSize); edma_transfer_config_t transferConfig; edma_tcd_t *linkTcd = NULL; /* Set up data transmit. */ if (hasSendData) { transferConfig.srcAddr = (uint32_t)transfer->data; transferConfig.destAddr = (uint32_t)LPI2C_MasterGetTxFifoAddress(base); transferConfig.srcTransferSize = kEDMA_TransferSize1Bytes; transferConfig.destTransferSize = kEDMA_TransferSize1Bytes; transferConfig.srcOffset = sizeof(uint8_t); transferConfig.destOffset = 0; transferConfig.minorLoopBytes = sizeof(uint8_t); /* TODO optimize to fill fifo */ transferConfig.majorLoopCounts = transfer->dataSize; /* Store the initially configured eDMA minor byte transfer count into the LPI2C handle */ handle->nbytes = transferConfig.minorLoopBytes; if (commandCount) { /* Create a software TCD, which will be chained after the commands. */ EDMA_TcdReset(tcd); EDMA_TcdSetTransferConfig(tcd, &transferConfig, NULL); EDMA_TcdEnableInterrupts(tcd, kEDMA_MajorInterruptEnable); linkTcd = tcd; } else { /* User is only transmitting data with no required commands, so this transfer can stand alone. */ EDMA_SetTransferConfig(handle->tx->base, handle->tx->channel, &transferConfig, NULL); EDMA_EnableChannelInterrupts(handle->tx->base, handle->tx->channel, kEDMA_MajorInterruptEnable); } } else if (hasReceiveData) { /* Set up data receive. */ transferConfig.srcAddr = (uint32_t)LPI2C_MasterGetRxFifoAddress(base); transferConfig.destAddr = (uint32_t)transfer->data; transferConfig.srcTransferSize = kEDMA_TransferSize1Bytes; transferConfig.destTransferSize = kEDMA_TransferSize1Bytes; transferConfig.srcOffset = 0; transferConfig.destOffset = sizeof(uint8_t); transferConfig.minorLoopBytes = sizeof(uint8_t); /* TODO optimize to empty fifo */ transferConfig.majorLoopCounts = transfer->dataSize; /* Store the initially configured eDMA minor byte transfer count into the LPI2C handle */ handle->nbytes = transferConfig.minorLoopBytes; if (FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base) || (!commandCount)) { /* We can put this receive transfer on its own DMA channel. */ EDMA_SetTransferConfig(handle->rx->base, handle->rx->channel, &transferConfig, NULL); EDMA_EnableChannelInterrupts(handle->rx->base, handle->rx->channel, kEDMA_MajorInterruptEnable); } else { /* For shared rx/tx DMA requests when there are commands, create a software TCD which will be */ /* chained onto the commands transfer, notice that in this situation assume tx/rx uses same channel */ EDMA_TcdReset(tcd); EDMA_TcdSetTransferConfig(tcd, &transferConfig, NULL); EDMA_TcdEnableInterrupts(tcd, kEDMA_MajorInterruptEnable); linkTcd = tcd; } } else { /* No data to send */ } /* Set up commands transfer. */ if (commandCount) { transferConfig.srcAddr = (uint32_t)handle->commandBuffer; transferConfig.destAddr = (uint32_t)LPI2C_MasterGetTxFifoAddress(base); transferConfig.srcTransferSize = kEDMA_TransferSize2Bytes; transferConfig.destTransferSize = kEDMA_TransferSize2Bytes; transferConfig.srcOffset = sizeof(uint16_t); transferConfig.destOffset = 0; transferConfig.minorLoopBytes = sizeof(uint16_t); /* TODO optimize to fill fifo */ transferConfig.majorLoopCounts = commandCount; EDMA_SetTransferConfig(handle->tx->base, handle->tx->channel, &transferConfig, linkTcd); } /* Start DMA transfer. */ if (hasReceiveData || !FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_StartTransfer(handle->rx); } if (hasReceiveData && !FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_EnableChannelInterrupts(handle->tx->base, handle->tx->channel, kEDMA_MajorInterruptEnable); } if ((hasSendData || commandCount) && FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_StartTransfer(handle->tx); } /* Enable DMA in both directions. This actually kicks of the transfer. */ LPI2C_MasterEnableDMA(base, true, true); return result; } status_t LPI2C_MasterTransferGetCountEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle, size_t *count) { assert(handle); if (!count) { return kStatus_InvalidArgument; } /* Catch when there is not an active transfer. */ if (!handle->isBusy) { *count = 0; return kStatus_NoTransferInProgress; } uint32_t remaining = handle->transfer.dataSize; /* If the DMA is still on a commands transfer that chains to the actual data transfer, */ /* we do nothing and return the number of transferred bytes as zero. */ if (EDMA_GetNextTCDAddress(handle->tx) == 0) { if (handle->transfer.direction == kLPI2C_Write) { remaining = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->tx->base, handle->tx->channel); } else { remaining = (uint32_t)handle->nbytes * EDMA_GetRemainingMajorLoopCount(handle->rx->base, handle->rx->channel); } } *count = handle->transfer.dataSize - remaining; return kStatus_Success; } status_t LPI2C_MasterTransferAbortEDMA(LPI2C_Type *base, lpi2c_master_edma_handle_t *handle) { /* Catch when there is not an active transfer. */ if (!handle->isBusy) { return kStatus_LPI2C_Idle; } /* Terminate DMA transfers. */ EDMA_AbortTransfer(handle->rx); if (FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { EDMA_AbortTransfer(handle->tx); } /* Reset fifos. */ base->MCR |= LPI2C_MCR_RRF_MASK | LPI2C_MCR_RTF_MASK; /* Send a stop command to finalize the transfer. */ base->MTDR = kStopCmd; /* Reset handle. */ handle->isBusy = false; return kStatus_Success; } /*! * @brief DMA completion callback. * @param dmaHandle DMA channel handle for the channel that completed. * @param userData User data associated with the channel handle. For this callback, the user data is the * LPI2C DMA driver handle. * @param isTransferDone Whether the DMA transfer has completed. * @param tcds Number of TCDs that completed. */ static void LPI2C_MasterEDMACallback(edma_handle_t *dmaHandle, void *userData, bool isTransferDone, uint32_t tcds) { lpi2c_master_edma_handle_t *handle = (lpi2c_master_edma_handle_t *)userData; bool hasReceiveData; if (!handle) { return; } hasReceiveData = (handle->transfer.direction == kLPI2C_Read) && (handle->transfer.dataSize); if (hasReceiveData && !FSL_FEATURE_LPI2C_HAS_SEPARATE_DMA_RX_TX_REQn(base)) { if (EDMA_GetNextTCDAddress(handle->tx) != 0) { LPI2C_MasterEnableDMA(handle->base, false, true); } } /* Check for errors. */ status_t result = LPI2C_MasterCheckAndClearError(handle->base, LPI2C_MasterGetStatusFlags(handle->base)); /* Done with this transaction. */ handle->isBusy = false; if (!(handle->transfer.flags & kLPI2C_TransferNoStopFlag)) { /* Send a stop command to finalize the transfer. */ handle->base->MTDR = kStopCmd; } /* Invoke callback. */ if (handle->completionCallback) { handle->completionCallback(handle->base, handle, result, handle->userData); } }