/* * Copyright (c) 2006-2021, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2022-01-09 chenbin the first version */ #include "drv_can.h" #ifdef BSP_USING_CAN #include "stdint.h" #include "n32g45x.h" #include "n32g45x_can.h" struct n32g45x_baud_rate_tab { uint32_t baud_rate; uint16_t PRESCALE; uint8_t RSJW; uint8_t TBS1; uint8_t TBS2; uint8_t notused; }; #define N32_CAN_BAUD_DEF(rate,rsjw,tbs1,tbs2,prescale) \ {.baud_rate = rate, \ .RSJW = rsjw, \ .TBS1 = tbs1, \ .TBS2 = tbs2, \ .PRESCALE = prescale \ } /* N32G45x can device */ struct n32g45x_can { char *name; CAN_Module * CANx; CAN_InitType can_init; CAN_FilterInitType can_filter_init; struct rt_can_device device; /* inherit from can device */ }; #define LOG_TAG "drv_can" #include /* * N32G45x CAN1 CAN2 used APB1 (36MHz) * baud calculation example: baud = Tclk / ((ss + bs1 + bs2) * brp) * 36MHz / ((1 + 5 + 3) * 4) = 1MHz */ #if defined (N32G45X)/* APB1 36MHz(max) */ static const struct n32g45x_baud_rate_tab can_baud_rate_tab[] = { N32_CAN_BAUD_DEF(CAN1MBaud, CAN_RSJW_1tq, CAN_TBS1_5tq, CAN_TBS2_3tq, 4), N32_CAN_BAUD_DEF(CAN800kBaud, CAN_RSJW_1tq, CAN_TBS1_5tq, CAN_TBS2_3tq, 5), N32_CAN_BAUD_DEF(CAN500kBaud, CAN_RSJW_1tq, CAN_TBS1_5tq, CAN_TBS2_3tq, 8), N32_CAN_BAUD_DEF(CAN250kBaud, CAN_RSJW_1tq, CAN_TBS1_5tq, CAN_TBS2_3tq, 16), N32_CAN_BAUD_DEF(CAN125kBaud, CAN_RSJW_1tq, CAN_TBS1_5tq, CAN_TBS2_3tq, 32), N32_CAN_BAUD_DEF(CAN100kBaud, CAN_RSJW_2tq, CAN_TBS1_8tq, CAN_TBS2_8tq, 20), N32_CAN_BAUD_DEF(CAN50kBaud, CAN_RSJW_2tq, CAN_TBS1_8tq, CAN_TBS2_8tq, 40), N32_CAN_BAUD_DEF(CAN20kBaud, CAN_RSJW_2tq, CAN_TBS1_8tq, CAN_TBS2_8tq, 80), N32_CAN_BAUD_DEF(CAN10kBaud, CAN_RSJW_2tq, CAN_TBS1_8tq, CAN_TBS2_8tq, 160), }; #endif #ifdef BSP_USING_CAN1 static struct n32g45x_can drv_can1 = { .name = "can1", .CANx = CAN1, }; #endif #ifdef BSP_USING_CAN2 static struct n32g45x_can drv_can2 = { .name = "can2", .CANx = CAN2, }; #endif static uint32_t get_can_baud_index(rt_uint32_t baud) { uint32_t len, index; len = sizeof(can_baud_rate_tab) / sizeof(can_baud_rate_tab[0]); for (index = 0; index < len; index++) { if (can_baud_rate_tab[index].baud_rate == baud) return index; } return 0; /* default baud is CAN1MBaud */ } static uint8_t get_can_mode_rtt2n32(uint8_t rtt_can_mode) { uint8_t mode = CAN_Normal_Mode; switch (rtt_can_mode) { case RT_CAN_MODE_NORMAL: mode = CAN_Normal_Mode; break; case RT_CAN_MODE_LISEN: mode = CAN_Silent_Mode; break; case RT_CAN_MODE_LOOPBACK: mode = CAN_LoopBack_Mode; break; case RT_CAN_MODE_LOOPBACKANLISEN: mode = CAN_Silent_LoopBack_Mode; break; } return mode; } static rt_err_t _can_filter_config(struct n32g45x_can *drv_can) { if(drv_can->CANx == CAN1) { CAN1_InitFilter(&(drv_can->can_filter_init)); } #ifdef CAN2 else if(drv_can->CANx == CAN2) { CAN2_InitFilter(&(drv_can->can_filter_init)); } #endif else { rt_kprintf("can filter config error\n"); return -RT_EINVAL; } return RT_EOK; } static rt_err_t _can_config(struct rt_can_device *can, struct can_configure *cfg) { struct n32g45x_can *drv_can; rt_uint32_t baud_index; RT_ASSERT(can); RT_ASSERT(cfg); drv_can = (struct n32g45x_can *)can->parent.user_data; RT_ASSERT(drv_can); /* CAN1 and CAN2 register init */ //CAN_DeInit(drv_can->CANx); /* Configure CAN1 and CAN2 */ if(drv_can->CANx == CAN1) { RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_CAN1 , ENABLE); n32_msp_can_init(CAN1); } #ifdef CAN2 else if(drv_can->CANx == CAN2) { RCC_EnableAPB1PeriphClk(RCC_APB1_PERIPH_CAN2 , ENABLE); n32_msp_can_init(CAN2); } #endif else { rt_kprintf("can init error1\n"); return -RT_EINVAL; } /* Struct init*/ CAN_InitStruct(&(drv_can->can_init)); drv_can->can_init.TTCM = DISABLE; drv_can->can_init.ABOM = DISABLE; drv_can->can_init.AWKUM = DISABLE; drv_can->can_init.NART = DISABLE; drv_can->can_init.RFLM = DISABLE; drv_can->can_init.TXFP = ENABLE; //mode drv_can->can_init.OperatingMode = get_can_mode_rtt2n32(cfg->mode); //baud baud_index = get_can_baud_index(cfg->baud_rate); drv_can->can_init.RSJW = can_baud_rate_tab[baud_index].RSJW; drv_can->can_init.TBS1 = can_baud_rate_tab[baud_index].TBS1; drv_can->can_init.TBS2 = can_baud_rate_tab[baud_index].TBS2; drv_can->can_init.BaudRatePrescaler = can_baud_rate_tab[baud_index].PRESCALE; /* init can */ if( CAN_Init(drv_can->CANx, &(drv_can->can_init) ) != CAN_InitSTS_Success ) { rt_kprintf("can init error2\n"); return -RT_ERROR; } /* default filter config */ _can_filter_config(drv_can); return RT_EOK; } #ifndef CAN1_TX_IRQn #define CAN1_TX_IRQn USB_HP_CAN1_TX_IRQn #endif #ifndef CAN1_RX0_IRQn #define CAN1_RX0_IRQn USB_LP_CAN1_RX0_IRQn #endif static rt_err_t _can_control(struct rt_can_device *can, int cmd, void *arg) { rt_uint32_t argval; struct n32g45x_can *drv_can; struct rt_can_filter_config *filter_cfg; RT_ASSERT(can != RT_NULL); drv_can = (struct n32g45x_can *)can->parent.user_data; RT_ASSERT(drv_can != RT_NULL); switch (cmd) { case RT_DEVICE_CTRL_CLR_INT: argval = (rt_uint32_t) arg; if (argval == RT_DEVICE_FLAG_INT_RX) { if (CAN1 == drv_can->CANx) { NVIC_DisableIRQ(CAN1_RX0_IRQn); NVIC_DisableIRQ(CAN1_RX1_IRQn); } #ifdef CAN2 if (CAN2 == drv_can->CANx) { NVIC_DisableIRQ(CAN2_RX0_IRQn); NVIC_DisableIRQ(CAN2_RX1_IRQn); } #endif CAN_INTConfig(drv_can->CANx, CAN_INT_FMP0, DISABLE); /*!< DATFIFO 0 message pending Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FF0, DISABLE); /*!< DATFIFO 0 full Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FOV0, DISABLE); /*!< DATFIFO 0 overrun Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FMP1, DISABLE); /*!< DATFIFO 1 message pending Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FF1, DISABLE); /*!< DATFIFO 1 full Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FOV1, DISABLE); /*!< DATFIFO 1 overrun Interrupt*/ } else if (argval == RT_DEVICE_FLAG_INT_TX) { if (CAN1 == drv_can->CANx) { NVIC_DisableIRQ(CAN1_TX_IRQn); } #ifdef CAN2 if (CAN2 == drv_can->CANx) { NVIC_DisableIRQ(CAN2_TX_IRQn); } #endif CAN_INTConfig(drv_can->CANx, CAN_INT_TME, DISABLE); /*!< Transmit mailbox empty Interrupt*/ } else if (argval == RT_DEVICE_CAN_INT_ERR) { if (CAN1 == drv_can->CANx) { NVIC_DisableIRQ(CAN1_SCE_IRQn); } #ifdef CAN2 if (CAN2 == drv_can->CANx) { NVIC_DisableIRQ(CAN2_SCE_IRQn); } #endif CAN_INTConfig(drv_can->CANx, CAN_INT_EWG, DISABLE); /*!< Error warning Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_EPV, DISABLE); /*!< Error passive Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_BOF, DISABLE); /*!< Bus-off Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_LEC, DISABLE); /*!< Last error code Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_ERR, DISABLE); /*!< Error Interrupt*/ } break; case RT_DEVICE_CTRL_SET_INT: argval = (rt_uint32_t) arg; if (argval == RT_DEVICE_FLAG_INT_RX) { CAN_INTConfig(drv_can->CANx, CAN_INT_FMP0, ENABLE); /*!< DATFIFO 0 message pending Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FF0, ENABLE); /*!< DATFIFO 0 full Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FOV0, ENABLE); /*!< DATFIFO 0 overrun Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FMP1, ENABLE); /*!< DATFIFO 1 message pending Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FF1, ENABLE); /*!< DATFIFO 1 full Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_FOV1, ENABLE); /*!< DATFIFO 1 overrun Interrupt*/ if (CAN1 == drv_can->CANx) { NVIC_SetPriority(CAN1_RX0_IRQn, 1); NVIC_EnableIRQ(CAN1_RX0_IRQn); NVIC_SetPriority(CAN1_RX1_IRQn, 1); NVIC_EnableIRQ(CAN1_RX1_IRQn); } #ifdef CAN2 if (CAN2 == drv_can->CANx) { NVIC_SetPriority(CAN2_RX0_IRQn, 1); NVIC_EnableIRQ(CAN2_RX0_IRQn); NVIC_SetPriority(CAN2_RX1_IRQn, 1); NVIC_EnableIRQ(CAN2_RX1_IRQn); } #endif } else if (argval == RT_DEVICE_FLAG_INT_TX) { CAN_INTConfig(drv_can->CANx, CAN_INT_TME, ENABLE); /*!< Transmit mailbox empty Interrupt*/ if (CAN1 == drv_can->CANx) { NVIC_SetPriority(CAN1_TX_IRQn, 1); NVIC_EnableIRQ(CAN1_TX_IRQn); } #ifdef CAN2 if (CAN2 == drv_can->CANx) { NVIC_SetPriority(CAN2_TX_IRQn, 1); NVIC_EnableIRQ(CAN2_TX_IRQn); } #endif } else if (argval == RT_DEVICE_CAN_INT_ERR) { CAN_INTConfig(drv_can->CANx, CAN_INT_EWG, ENABLE); /*!< Error warning Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_EPV, ENABLE); /*!< Error passive Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_BOF, ENABLE); /*!< Bus-off Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_LEC, ENABLE); /*!< Last error code Interrupt*/ CAN_INTConfig(drv_can->CANx, CAN_INT_ERR, ENABLE); /*!< Error Interrupt*/ if (CAN1 == drv_can->CANx) { NVIC_SetPriority(CAN1_SCE_IRQn, 1); NVIC_EnableIRQ(CAN1_SCE_IRQn); } #ifdef CAN2 if (CAN2 == drv_can->CANx) { NVIC_SetPriority(CAN2_SCE_IRQn, 1); NVIC_EnableIRQ(CAN2_SCE_IRQn); } #endif } break; case RT_CAN_CMD_SET_FILTER: { rt_uint32_t id_h = 0; rt_uint32_t id_l = 0; rt_uint32_t mask_h = 0; rt_uint32_t mask_l = 0; rt_uint32_t mask_l_tail = 0; //CAN_FxR2 bit [2:0] if (RT_NULL == arg) { /* default filter config */ _can_filter_config(drv_can); } else { filter_cfg = (struct rt_can_filter_config *)arg; /* get default filter */ for (int i = 0; i < filter_cfg->count; i++) { if (filter_cfg->items[i].hdr == -1) { drv_can->can_filter_init.Filter_Num = i; } else { drv_can->can_filter_init.Filter_Num = filter_cfg->items[i].hdr; } if (filter_cfg->items[i].mode == 0x00) { drv_can->can_filter_init.Filter_Mode = CAN_Filter_IdMaskMode; } else if (filter_cfg->items[i].mode == 0x01) { drv_can->can_filter_init.Filter_Mode = CAN_Filter_IdListMode; } if (filter_cfg->items[i].ide == RT_CAN_STDID) { id_h = ((filter_cfg->items[i].id << 18) >> 13) & 0xFFFF; id_l = ((filter_cfg->items[i].id << 18) | (filter_cfg->items[i].ide << 2) | (filter_cfg->items[i].rtr << 1)) & 0xFFFF; mask_h = ((filter_cfg->items[i].mask << 21) >> 16) & 0xFFFF; mask_l = ((filter_cfg->items[i].mask << 21) | mask_l_tail) & 0xFFFF; } else if (filter_cfg->items[i].ide == RT_CAN_EXTID) { id_h = (filter_cfg->items[i].id >> 13) & 0xFFFF; id_l = ((filter_cfg->items[i].id << 3) | (filter_cfg->items[i].ide << 2) | (filter_cfg->items[i].rtr << 1)) & 0xFFFF; mask_h = ((filter_cfg->items[i].mask << 3) >> 16) & 0xFFFF; mask_l = ((filter_cfg->items[i].mask << 3) | mask_l_tail) & 0xFFFF; } drv_can->can_filter_init.Filter_Scale = CAN_Filter_32bitScale; drv_can->can_filter_init.Filter_HighId = id_h; drv_can->can_filter_init.Filter_LowId = id_l; drv_can->can_filter_init.FilterMask_HighId = mask_h; drv_can->can_filter_init.FilterMask_LowId = mask_l; drv_can->can_filter_init.Filter_FIFOAssignment = CAN_FIFO0; drv_can->can_filter_init.Filter_Act = ENABLE; /* Filter conf */ _can_filter_config(drv_can); } } break; } case RT_CAN_CMD_SET_MODE: argval = (rt_uint32_t) arg; if (argval != RT_CAN_MODE_NORMAL && argval != RT_CAN_MODE_LISEN && argval != RT_CAN_MODE_LOOPBACK && argval != RT_CAN_MODE_LOOPBACKANLISEN) { return -RT_ERROR; } if (argval != drv_can->device.config.mode) { drv_can->device.config.mode = argval; return _can_config(&drv_can->device, &drv_can->device.config); } break; case RT_CAN_CMD_SET_BAUD: argval = (rt_uint32_t) arg; if (argval != CAN1MBaud && argval != CAN800kBaud && argval != CAN500kBaud && argval != CAN250kBaud && argval != CAN125kBaud && argval != CAN100kBaud && argval != CAN50kBaud && argval != CAN20kBaud && argval != CAN10kBaud) { return -RT_ERROR; } if (argval != drv_can->device.config.baud_rate) { drv_can->device.config.baud_rate = argval; return _can_config(&drv_can->device, &drv_can->device.config); } break; case RT_CAN_CMD_SET_PRIV: argval = (rt_uint32_t) arg; if (argval != RT_CAN_MODE_PRIV && argval != RT_CAN_MODE_NOPRIV) { return -RT_ERROR; } if (argval != drv_can->device.config.privmode) { drv_can->device.config.privmode = argval; return _can_config(&drv_can->device, &drv_can->device.config); } break; case RT_CAN_CMD_GET_STATUS: { // drv_can->device.status.rcverrcnt = CAN_GetReceiveErrCounter(drv_can->CANx); // drv_can->device.status.snderrcnt = CAN_GetLSBTransmitErrCounter(drv_can->CANx); // drv_can->device.status.lasterrtype = CAN_GetLastErrCode(drv_can->CANx); // drv_can->device.status.errcode = CAN_GetLastErrCode(drv_can->CANx); rt_uint32_t errtype; errtype = drv_can->CANx->ESTS; drv_can->device.status.rcverrcnt = errtype >> 24; drv_can->device.status.snderrcnt = (errtype >> 16 & 0xFF); drv_can->device.status.lasterrtype = errtype & 0x70; drv_can->device.status.errcode = errtype & 0x07; rt_memcpy(arg, &drv_can->device.status, sizeof(drv_can->device.status)); } break; } return RT_EOK; } /* CAN Mailbox Transmit Request */ #define TMIDxR_TXRQ ((uint32_t)0x00000001) /* Transmit mailbox request */ static int _can_sendmsg_rtmsg(CAN_Module* CANx, struct rt_can_msg *pmsg, uint32_t mailbox_index) { CanTxMessage CAN_TxMessage = {0}; CanTxMessage* TxMessage = &CAN_TxMessage; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); if (RT_CAN_STDID == pmsg->ide) { TxMessage->IDE = CAN_Standard_Id; RT_ASSERT(IS_CAN_STDID(pmsg->id)); TxMessage->StdId = pmsg->id; } else { TxMessage->IDE = CAN_Extended_Id; RT_ASSERT(IS_CAN_EXTID(pmsg->id)); TxMessage->ExtId = pmsg->id; } if (RT_CAN_DTR == pmsg->rtr) { TxMessage->RTR = CAN_RTRQ_DATA; } else { TxMessage->RTR = CAN_RTRQ_REMOTE; } if (mailbox_index != CAN_TxSTS_NoMailBox) { /* Set up the Id */ CANx->sTxMailBox[mailbox_index].TMI &= TMIDxR_TXRQ; if (TxMessage->IDE == CAN_Standard_Id) { assert_param(IS_CAN_STDID(TxMessage->StdId)); CANx->sTxMailBox[mailbox_index].TMI |= ((TxMessage->StdId << 21) | TxMessage->RTR); } else { assert_param(IS_CAN_EXTID(TxMessage->ExtId)); CANx->sTxMailBox[mailbox_index].TMI |= ((TxMessage->ExtId << 3) | TxMessage->IDE | TxMessage->RTR); } /* Set up the DLC */ TxMessage->DLC = pmsg->len & 0x0FU; CANx->sTxMailBox[mailbox_index].TMDT &= (uint32_t)0xFFFFFFF0; CANx->sTxMailBox[mailbox_index].TMDT |= TxMessage->DLC; /* Set up the data field */ CANx->sTxMailBox[mailbox_index].TMDH = (((uint32_t)pmsg->data[7] << 24) | ((uint32_t)pmsg->data[6] << 16) | ((uint32_t)pmsg->data[5] << 8) | ((uint32_t)pmsg->data[4]) ); CANx->sTxMailBox[mailbox_index].TMDL = (((uint32_t)pmsg->data[3] << 24) | ((uint32_t)pmsg->data[2] << 16) | ((uint32_t)pmsg->data[1] << 8) | ((uint32_t)pmsg->data[0]) ); /* Request transmission */ CANx->sTxMailBox[mailbox_index].TMI |= TMIDxR_TXRQ; return RT_EOK; } return -RT_ERROR; } static int _can_sendmsg(struct rt_can_device *can, const void *buf, rt_uint32_t box_num) { struct n32g45x_can *drv_can; RT_ASSERT(can != RT_NULL); RT_ASSERT(buf != RT_NULL); drv_can = (struct n32g45x_can *)can->parent.user_data; RT_ASSERT(drv_can != RT_NULL); /* Select one empty transmit mailbox */ switch(box_num) { case 0: if ((drv_can->CANx->TSTS & CAN_TSTS_TMEM0) != CAN_TSTS_TMEM0) { /* Return function status */ return -RT_ERROR; } break; case 1: if ((drv_can->CANx->TSTS & CAN_TSTS_TMEM1) != CAN_TSTS_TMEM1) { /* Return function status */ return -RT_ERROR; } break; case 2: if ((drv_can->CANx->TSTS & CAN_TSTS_TMEM2) != CAN_TSTS_TMEM2) { /* Return function status */ return -RT_ERROR; } break; default: RT_ASSERT(0); break; } //start send msg return _can_sendmsg_rtmsg(drv_can->CANx , ((struct rt_can_msg *) buf) ,box_num); } static int _can_recvmsg_rtmsg(CAN_Module* CANx, struct rt_can_msg *pmsg, uint32_t FIFONum) { CanRxMessage CAN_RxMessage = {0}; CanRxMessage* RxMessage = &CAN_RxMessage; /* Check the parameters */ assert_param(IS_CAN_ALL_PERIPH(CANx)); assert_param(IS_CAN_FIFO(FIFONum)); /* Check the Rx FIFO */ if (FIFONum == CAN_FIFO0) /* Rx element is assigned to Rx FIFO 0 */ { /* Check that the Rx FIFO 0 is not empty */ if ((CANx->RFF0 & CAN_RFF0_FFMP0) == 0U) { return -RT_ERROR; } } else /* Rx element is assigned to Rx FIFO 1 */ { /* Check that the Rx FIFO 1 is not empty */ if ((CANx->RFF1 & CAN_RFF1_FFMP1) == 0U) { return -RT_ERROR; } } /* Get the Id */ RxMessage->IDE = (uint8_t)0x04 & CANx->sFIFOMailBox[FIFONum].RMI; if (RxMessage->IDE == CAN_Standard_Id) { RxMessage->StdId = (uint32_t)0x000007FF & (CANx->sFIFOMailBox[FIFONum].RMI >> 21); } else { RxMessage->ExtId = (uint32_t)0x1FFFFFFF & (CANx->sFIFOMailBox[FIFONum].RMI >> 3); } RxMessage->RTR = (uint8_t)0x02 & CANx->sFIFOMailBox[FIFONum].RMI; /* Get the DLC */ RxMessage->DLC = (uint8_t)0x0F & CANx->sFIFOMailBox[FIFONum].RMDT; /* Get the FMI */ RxMessage->FMI = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONum].RMDT >> 8); /* Get the data field */ pmsg->data[0] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONum].RMDL; pmsg->data[1] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONum].RMDL >> 8); pmsg->data[2] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONum].RMDL >> 16); pmsg->data[3] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONum].RMDL >> 24); pmsg->data[4] = (uint8_t)0xFF & CANx->sFIFOMailBox[FIFONum].RMDH; pmsg->data[5] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONum].RMDH >> 8); pmsg->data[6] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONum].RMDH >> 16); pmsg->data[7] = (uint8_t)0xFF & (CANx->sFIFOMailBox[FIFONum].RMDH >> 24); /* get len */ pmsg->len = RxMessage->DLC; /* get id */ if (RxMessage->IDE == CAN_Standard_Id) { pmsg->ide = RT_CAN_STDID; pmsg->id = RxMessage->StdId; } else { pmsg->ide = RT_CAN_EXTID; pmsg->id = RxMessage->ExtId; } /* get type */ if (CAN_RTRQ_Data == RxMessage->RTR) { pmsg->rtr = RT_CAN_DTR; } else { pmsg->rtr = RT_CAN_RTR; } /* get hdr */ if (CANx == CAN1) { pmsg->hdr = (RxMessage->FMI + 1) >> 1; } #ifdef CAN2 else if (CANx == CAN2) { pmsg->hdr = (RxMessage->FMI >> 1) + 14; } #endif /* Release the DATFIFO */ /* Release FIFO0 */ if (FIFONum == CAN_FIFO0) { CANx->RFF0 |= CAN_RFF0_RFFOM0; } /* Release FIFO1 */ else /* FIFONum == CAN_FIFO1 */ { CANx->RFF1 |= CAN_RFF1_RFFOM1; } return RT_EOK; } static int _can_recvmsg(struct rt_can_device *can, void *buf, rt_uint32_t fifo) { struct n32g45x_can *drv_can; RT_ASSERT(can != RT_NULL); RT_ASSERT(buf != RT_NULL); drv_can = (struct n32g45x_can *)can->parent.user_data; RT_ASSERT(drv_can != RT_NULL); /* get data */ return _can_recvmsg_rtmsg(drv_can->CANx,((struct rt_can_msg *) buf),fifo); } static const struct rt_can_ops _can_ops = { _can_config, _can_control, _can_sendmsg, _can_recvmsg, }; static void _can_rx_isr(struct rt_can_device *can, rt_uint32_t fifo) { struct n32g45x_can *drv_can; RT_ASSERT(can != RT_NULL); drv_can = (struct n32g45x_can *)can->parent.user_data; RT_ASSERT(drv_can != RT_NULL); switch (fifo) { case CAN_FIFO0: /* save to user list */ if( CAN_GetFlagSTS(drv_can->CANx, CAN_FLAG_FFMP0) && CAN_PendingMessage(drv_can->CANx, CAN_FIFO0) ) { rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8); } /* Check FULL flag for FIFO0 */ if( CAN_GetFlagSTS(drv_can->CANx, CAN_FLAG_FFULL0) ) { /* Clear FIFO0 FULL Flag */ CAN_ClearFlag(drv_can->CANx, CAN_FLAG_FFULL0); } /* Check Overrun flag for FIFO0 */ if( CAN_GetFlagSTS(drv_can->CANx, CAN_FLAG_FFOVR0) ) { /* Clear FIFO0 Overrun Flag */ CAN_ClearFlag(drv_can->CANx, CAN_FLAG_FFOVR0); rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8); } break; case CAN_FIFO1: /* save to user list */ if( CAN_GetFlagSTS(drv_can->CANx, CAN_FLAG_FFMP1) && CAN_PendingMessage(drv_can->CANx, CAN_FIFO1) ) { rt_hw_can_isr(can, RT_CAN_EVENT_RX_IND | fifo << 8); } /* Check FULL flag for FIFO1 */ if( CAN_GetFlagSTS(drv_can->CANx, CAN_FLAG_FFULL1) ) { /* Clear FIFO1 FULL Flag */ CAN_ClearFlag(drv_can->CANx, CAN_FLAG_FFULL1); } /* Check Overrun flag for FIFO1 */ if( CAN_GetFlagSTS(drv_can->CANx, CAN_FLAG_FFOVR1) ) { /* Clear FIFO1 Overrun Flag */ CAN_ClearFlag(drv_can->CANx, CAN_FLAG_FFOVR1); rt_hw_can_isr(can, RT_CAN_EVENT_RXOF_IND | fifo << 8); } break; } } #ifdef BSP_USING_CAN1 /** * @brief This function handles CAN1 TX interrupts. transmit fifo0/1/2 is empty can trigger this interrupt */ #define CAN1_TX_IRQHandler USB_HP_CAN1_TX_IRQHandler void CAN1_TX_IRQHandler(void) { rt_interrupt_enter(); if(CAN_GetFlagSTS(drv_can1.CANx, CAN_FLAG_RQCPM0) ) { rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | (0x00 << 8) ); CAN_ClearFlag(drv_can1.CANx, CAN_FLAG_RQCPM0); } if(CAN_GetFlagSTS(drv_can1.CANx, CAN_FLAG_RQCPM1) ) { rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | (0x01 << 8) ); CAN_ClearFlag(drv_can1.CANx, CAN_FLAG_RQCPM1); } if(CAN_GetFlagSTS(drv_can1.CANx, CAN_FLAG_RQCPM2) ) { rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_DONE | (0x02 << 8) ); CAN_ClearFlag(drv_can1.CANx, CAN_FLAG_RQCPM2); } rt_interrupt_leave(); } /** * @brief This function handles CAN1 RX0 interrupts. */ #define CAN1_RX0_IRQHandler USB_LP_CAN1_RX0_IRQHandler void CAN1_RX0_IRQHandler(void) { rt_interrupt_enter(); _can_rx_isr(&drv_can1.device, CAN_FIFO0); rt_interrupt_leave(); } /** * @brief This function handles CAN1 RX1 interrupts. */ void CAN1_RX1_IRQHandler(void) { rt_interrupt_enter(); _can_rx_isr(&drv_can1.device, CAN_FIFO1); rt_interrupt_leave(); } /** * @brief This function handles CAN1 SCE interrupts. */ void CAN1_SCE_IRQHandler(void) { uint32_t errtype; rt_interrupt_enter(); if(CAN_GetIntStatus(drv_can1.CANx, CAN_INT_ERR) ) { errtype = drv_can1.CANx->ESTS; // ESTS -> LEC switch ((errtype & 0x70) >> 4) { case RT_CAN_BUS_BIT_PAD_ERR: break; case RT_CAN_BUS_FORMAT_ERR: drv_can1.device.status.formaterrcnt++; break; case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */ drv_can1.device.status.ackerrcnt++; if (!READ_BIT(drv_can1.CANx->TSTS, CAN_TSTS_TXOKM0)) rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 0 << 8); else if (!READ_BIT(drv_can1.CANx->TSTS, CAN_TSTS_TXOKM1)) rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 1 << 8); else if (!READ_BIT(drv_can1.CANx->TSTS, CAN_TSTS_TXOKM2)) rt_hw_can_isr(&drv_can1.device, RT_CAN_EVENT_TX_FAIL | 2 << 8); break; case RT_CAN_BUS_IMPLICIT_BIT_ERR: case RT_CAN_BUS_EXPLICIT_BIT_ERR: drv_can1.device.status.biterrcnt++; break; case RT_CAN_BUS_CRC_ERR: drv_can1.device.status.crcerrcnt++; break; } drv_can1.device.status.lasterrtype = errtype & 0x70; drv_can1.device.status.rcverrcnt = errtype >> 24; drv_can1.device.status.snderrcnt = (errtype >> 16 & 0xFF); drv_can1.device.status.errcode = errtype & 0x07; CAN_ClearINTPendingBit(drv_can1.CANx, CAN_INT_ERR); } rt_interrupt_leave(); } #endif /* BSP_USING_CAN1 */ #ifdef BSP_USING_CAN2 /** * @brief This function handles CAN2 TX interrupts. */ void CAN2_TX_IRQHandler(void) { rt_interrupt_enter(); if(CAN_GetFlagSTS(drv_can2.CANx, CAN_FLAG_RQCPM0) ) { CAN_ClearFlag(drv_can2.CANx, CAN_FLAG_RQCPM0); rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | (0x00 << 8) ); } if(CAN_GetFlagSTS(drv_can2.CANx, CAN_FLAG_RQCPM1) ) { CAN_ClearFlag(drv_can2.CANx, CAN_FLAG_RQCPM1); rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | (0x01 << 8) ); } if(CAN_GetFlagSTS(drv_can2.CANx, CAN_FLAG_RQCPM2) ) { CAN_ClearFlag(drv_can2.CANx, CAN_FLAG_RQCPM2); rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_DONE | (0x02 << 8) ); } rt_interrupt_leave(); } /** * @brief This function handles CAN2 RX0 interrupts. */ void CAN2_RX0_IRQHandler(void) { rt_interrupt_enter(); _can_rx_isr(&drv_can2.device, CAN_FIFO0); rt_interrupt_leave(); } /** * @brief This function handles CAN2 RX1 interrupts. */ void CAN2_RX1_IRQHandler(void) { rt_interrupt_enter(); _can_rx_isr(&drv_can2.device, CAN_FIFO1); rt_interrupt_leave(); } /** * @brief This function handles CAN2 SCE interrupts. */ void CAN2_SCE_IRQHandler(void) { uint32_t errtype; rt_interrupt_enter(); if(CAN_GetIntStatus(drv_can2.CANx, CAN_INT_ERR) ) { errtype = drv_can2.CANx->ESTS; // ESTS -> LEC switch ((errtype & 0x70) >> 4) { case RT_CAN_BUS_BIT_PAD_ERR: break; case RT_CAN_BUS_FORMAT_ERR: drv_can2.device.status.formaterrcnt++; break; case RT_CAN_BUS_ACK_ERR:/* attention !!! test ack err's unit is transmit unit */ drv_can2.device.status.ackerrcnt++; if (!READ_BIT(drv_can2.CANx->TSTS, CAN_TSTS_TXOKM0)) rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 0 << 8); else if (!READ_BIT(drv_can2.CANx->TSTS, CAN_TSTS_TXOKM1)) rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 1 << 8); else if (!READ_BIT(drv_can2.CANx->TSTS, CAN_TSTS_TXOKM2)) rt_hw_can_isr(&drv_can2.device, RT_CAN_EVENT_TX_FAIL | 2 << 8); break; case RT_CAN_BUS_IMPLICIT_BIT_ERR: case RT_CAN_BUS_EXPLICIT_BIT_ERR: drv_can2.device.status.biterrcnt++; break; case RT_CAN_BUS_CRC_ERR: drv_can2.device.status.crcerrcnt++; break; } drv_can2.device.status.lasterrtype = errtype & 0x70; drv_can2.device.status.rcverrcnt = errtype >> 24; drv_can2.device.status.snderrcnt = (errtype >> 16 & 0xFF); drv_can2.device.status.errcode = errtype & 0x07; CAN_ClearINTPendingBit(drv_can2.CANx, CAN_INT_ERR); } rt_interrupt_leave(); } #endif /* BSP_USING_CAN2 */ int rt_hw_can_init(void) { struct can_configure config = CANDEFAULTCONFIG; config.privmode = RT_CAN_MODE_NOPRIV; config.ticks = 50; #ifdef RT_CAN_USING_HDR config.maxhdr = 14; #ifdef CAN2 config.maxhdr = 28; #endif #endif #ifdef BSP_USING_CAN1 /* config default filter */ drv_can1.can_filter_init.Filter_Num = 0; drv_can1.can_filter_init.Filter_Mode = CAN_Filter_IdMaskMode; drv_can1.can_filter_init.Filter_Scale = CAN_Filter_32bitScale; drv_can1.can_filter_init.Filter_HighId = 0x0000; drv_can1.can_filter_init.Filter_LowId = 0x0000; drv_can1.can_filter_init.FilterMask_HighId = 0; drv_can1.can_filter_init.FilterMask_LowId = 0; drv_can1.can_filter_init.Filter_FIFOAssignment = CAN_FIFO0; drv_can1.can_filter_init.Filter_Act = ENABLE; drv_can1.device.config = config; /* register CAN1 device */ rt_hw_can_register(&drv_can1.device, drv_can1.name, &_can_ops, &drv_can1); #endif /* BSP_USING_CAN1 */ #ifdef BSP_USING_CAN2 /* config default filter */ drv_can2.can_filter_init.Filter_Num = 0; drv_can2.can_filter_init.Filter_Mode = CAN_Filter_IdMaskMode; drv_can2.can_filter_init.Filter_Scale = CAN_Filter_32bitScale; drv_can2.can_filter_init.Filter_HighId = 0x0000; drv_can2.can_filter_init.Filter_LowId = 0x0000; drv_can2.can_filter_init.FilterMask_HighId = 0; drv_can2.can_filter_init.FilterMask_LowId = 0; drv_can2.can_filter_init.Filter_FIFOAssignment = CAN_FIFO0; drv_can2.can_filter_init.Filter_Act = ENABLE; drv_can2.device.config = config; /* register CAN2 device */ rt_hw_can_register(&drv_can2.device, drv_can2.name, &_can_ops, &drv_can2); #endif /* BSP_USING_CAN2 */ return 0; } INIT_BOARD_EXPORT(rt_hw_can_init); #endif /* BSP_USING_CAN */ /************************** end of file ******************/