
Beginning
STM32

T E C H N O L O G Y I N A C T I O N ™

Warren Gay

xix

About the Author

Warren Gay started out in electronics at an early age, dragging discarded TVs and radios

home from public school. In high school he developed a fascination for programming

the IBM 1130 computer, which resulted in a career-plan change to software

development. Since graduating from Ryerson Polytechnical Institute, he has enjoyed

a 30-plus-year software developer career, programming mainly in C/C++. Warren has

been programming Linux since 1994 as an open source contributor and professionally

on various Unix platforms since 1987.

Before attending Ryerson, Warren built an Intel 8008 system from scratch before

there were CP/M systems and before computers got personal. In later years, Warren

earned an advanced amateur radio license (call sign VE3WWG) and worked the amateur

radio satellites. A high point of his ham-radio hobby was making digital contact with the

Mir space station (U2MIR) in 1991.

Warren works at Datablocks.net, an enterprise-class ad-serving software services

company where he programs C++ server solutions on Linux back-end systems.

1
© Warren Gay 2018
W. Gay, Beginning STM32, https://doi.org/10.1007/978-1-4842-3624-6_1

CHAPTER 1

Introduction
There is considerable interest in the ARM Cortex platform today because ARM

devices are found everywhere. Units containing ARM devices range from the small

microcontroller embedded systems to cellphones and larger servers running Linux.

Soon, ARM will also be present in higher numbers in the datacenter. These are all good

reasons to become familiar with ARM technology.

With the technology ranging from microcontrollers to full servers, the question

naturally arises: “Why study embedded device programming? Why not focus on end-

user systems running Linux, like the Raspberry Pi?”

The simple answer is that embedded systems perform well in scenarios that are

awkward for larger systems. They are frequently used to interface with the physical

world. They go between the physical world and a desktop system, for example. The

humble keyboard uses a dedicated MCU (microcontroller unit) to scan key switches of

the keyboard and report key-press events to the desktop system. This not only reduces

the amount of wiring necessary but also frees the main CPU from expending its high-

performance computing on the simple task of noticing key-press events.

Other applications include embedded systems throughout a factory floor to monitor

temperature, security, and fire detection. It makes little sense to use a complete desktop

system for this type of purpose. Stand-alone embedded systems save money and boot

instantly. Finally, the MCU’s small size makes it the only choice in flying drones where

weight is a critical factor.

The development of embedded systems traditionally required the resources of two

disciplines:

• Hardware engineer

• Software developer

Frequently, one person is assigned the task of designing the end product. Hardware

engineers specialize in the design of the electronic circuits involved, but eventually the

2

product requires software. This can be a challenge because software people generally

lack the electronics know-how while the engineers often lack the software expertise.

Because of reduced budgets and delivery times, the electronics engineer often becomes

the software engineer as well.

There is no disadvantage to one person’s performing both design aspects as long

as the necessary skills are present. Whether you’re an electronics engineer, software

developer, hobbyist, or maker, there is nothing like real, down-to-earth practice to get

you going. That is what this book is all about.

 STM32F103C8T6
The device chosen for this book is the STMicroelectronics STM32F103C8T6. This part

number is a mouthful, so let’s break it down:

• STM32 (STMicroelectronics platform)

• F1 (device family)

• 03 (subdivision of the device family)

• C8T6 (physical manifestation affecting amount of SRAM, flash

memory, and so on)

As the platform name implies, these devices are based upon a 32-bit path and are

considerably more powerful than 8-bit devices as a result.

The F103 is one branch (F1 + 03) of the STM32 platform. This subdivision decides

the CPU and peripheral capabilities of the device.

Finally, the C8T6 suffix further defines the capabilities of the device, like the memory

capacity and clock speeds.

The STM32F103C8T6 device was chosen for this book because of the following

factors:

• very low cost (as low as $2 US on eBay)

• availability (eBay, Amazon, AliExpress, etc.)

• advanced capability

• form factor

Chapter 1 IntroduCtIon

3

The STM32F103C8T6 is likely to remain the lowest-cost way for students and

hobbyists alike to explore the ARM Cortex-M3 platform for quite some time. The

device is readily available and is extremely capable. Finally, the form factor of the small

PCB allows header strips to be soldered to the edges and plugged into a breadboard.

Breadboards are the most convenient way to perform a wide array of experiments.

The MCU on a blue PCB (Figure 1-1) is affectionately known as the “Blue Pill,”

inspired by the movie The Matrix. There are some older PCBs that were red in color and

were referred to as the “Red Pill.” There are still others, which are black and are known

as the “Black Pill.” In this book, I’ll be assuming you have the Blue Pill model. Apart from

some USB deficiencies, there should be little other difference between it and the other

models.

Low cost has another advantage—it allows you to own several devices for projects

involving CAN communications, for example. This book explores CAN communication

using three devices connected by a common bus. Low cost means not being left out on a

student budget.

Figure 1-1. The STM32F103C8T6 PCB (printed circuit board) with the header
strips soldered in, often referred to as the “blue pill”

Chapter 1 IntroduCtIon

4

The peripheral support of the STM32F103 is simply amazing when you consider its

price. Peripherals included consist of:

• 4 x 16-bit GPIO Ports (most are 5-volt tolerant)

• 3 x USART (Universal Synchronous/Asynchronous Receiver/

Transmitter)

• 2 x I2C controllers

• 2 x SPI controllers

• 2 x ADC (Analog Digital Converter)

• 2 x DMA (Direct Memory Address controllers)

• 4 x timers

• watch dog timers

• 1 x USB controller

• 1 x CAN controller

• 1 x CRC generator

• 20K static RAM

• 64K (or 128K) FLASH memory

• ARM Cortex M3 CPU, max 72 MHz clock

There are some restrictions, however. For example, the USB and CAN controllers

cannot operate at the same time. Other peripherals may conflict over the I/O pins used.

Most pin conflicts are managed through the AFIO (Alternate Function Input Output)

configuration, allowing different pins to be used for a peripheral’s function.

In the peripheral configuration, several separate clocks can be individually enabled

to tailor power usage. The advanced capability of this MCU makes it suitable for study.

What you learn about the STM32F103 family can be leveraged later in more advanced

offerings like the STM32F407.

The flash memory is officially listed at 64K bytes, but you may find that it supports

128K. This is covered in Chapter 2 and permits good-sized applications to be flashed to

the device.

Chapter 1 IntroduCtIon

8

 What You Need
Let’s briefly cover some items that you might want to acquire. Certainly, number one on

the list is the Blue Pill device (see Figure 1-1). I recommend that you purchase units that

include the header strips to be soldered onto the PCB so that you can easily use the unit

on a breadboard (or presoldered, if you prefer).

These units are Buy-it-Now priced on eBay at around $2.13 US, with free shipping

from various sellers. To find these deals, simply use the part number STM32F103C8T6

for your search. Chapters 18–19 use three of these units communicating with each other

over a CAN bus. If you’d like to perform those experiments, be sure to obtain at least

three units. Otherwise, the demo projects only involve one unit at a time. A spare is

always recommended in case of an unhappy accident.

 ST-Link V2 Programming Unit
The next essential piece of hardware is a programming adapter. Fortunately, these are

also very economically priced. These can be found on eBay for about $2.17 US, with free

shipping. Simply search for “ST-Link.” Be sure to get the “V2” programmer since there is

no point in using the inferior older unit.

Most auctions will include four detachable wires to connect the unit to your STM32

device. Try to buy a unit that includes these unless you already have a cable. Figure 1-2

illustrates the USB programmer, usable from Windows, Raspberry Pi, Linux, MacOS, and

FreeBSD.

Chapter 1 IntroduCtIon

9

The STM32F103C8T6 device can be programmed in multiple ways, but this book will

only use the ST-Link V2 USB programmer. This will simplify things for you when doing

project development and allows remote debugging.

A USB extension cable is useful with this unit. If you don’t have one, you might

consider getting one.

 Breadboard
This almost goes without saying, but a breadboard is necessary to prototype

experiments. The breadboard is a solderless way to quickly wire up experiments, try

them, and then pull out the wires for the next experiment.

Many of the projects in this book are small, requiring space for one Blue Pill device

and perhaps some LEDs or a chip or two. However, other experiments, like the one in

Chapters 18–19, use three units communicating with each other over a CAN bus.

Figure 1-2. ST-Link V2 programmer and cable

Chapter 1 IntroduCtIon

10

I recommend that you obtain a breadboard that will fit four units (this leaves a little extra

hookup space). Alternatively, you could simply buy four small breadboards, though this

is less convenient.

Figure 1-3 illustrates the breadboard that I am using in this book. It is not only large

enough, but also has power rails at the top and bottom of each strip. The power rails are

recommended, since this eases the wiring.

 DuPont (Jumper) Wires
You might not give much thought to the wiring of a breadboard, but you will find that

DuPont wires can make a huge difference. Yes, you can cut and strip your own AWG22

(or AWG24) gauge wires, but this is inconvenient and time consuming. It is far more

convenient to have a small box of wires ready to go. Figure 1-4 illustrates a small random

collection of DuPont wires.

Figure 1-3. A breadboard with supply rails

Chapter 1 IntroduCtIon

11

Male-to-male DuPont wires can be purchased in assorted sets on eBay for about

the Buy-it-Now price of $2.00 US with free shipping. They might have auction titles like

“65Pcs Male to Male Solderless Flexible Breadboard DuPont Jumper Cable Wires.” I

recommend that you get the assorted sets so that you get different colors and lengths.

A search like “DuPont wires male -female” should yield good results. The “-female”

keyword will eliminate any ads that feature female connectors.

 0.1 uF Bypass Capacitors
You might find that you can get by without bypass caps (capacitors), but they are

recommended (shown in Figure 1-5 as yellow blobs on the power rails). These can be

purchased in quantity from various sources, including eBay.

Figure 1-4. A random collection of DuPont wires

Chapter 1 IntroduCtIon

12

Try to buy quality capacitors like Metalized Polyester Film units if possible. The

voltage rating can be as low as 16 volts. A few of these should be plugged into your supply

rails on the breadboard, between the positive and negative rails, to filter out any voltage

transients and noise.

 USB TTL Serial Adapter
This device is essential for some of the projects in this book. Figure 1-6 illustrates the

unit that I used. This serial adapter is used to communicate data to your desktop/laptop.

Without a display, this allows you to communicate through a virtual serial link (via USB)

to a terminal program.

Figure 1-5. Breadboard with STM32F103C8T6 and 0.1 uF bypass capacitors
installed on the rails

Chapter 1 IntroduCtIon

13

There are several types of these available on eBay and elsewhere, but be careful to get

a unit with hardware flow control signals. The cheapest units will lack these additional

signals (look for RTS and CTS). Without hardware flow control signals, you will not be

able to communicate at high speeds, such as 115200 baud, without losing data.

If you’re running Windows, also be careful of buying FTDI (FTDI Chip) fakes. There

were reports of FTDI software drivers bricking the fake devices at one time. Your choice

doesn’t have to include FTDI, but if the device claims FTDI compatibility, be aware and

check your driver support.

You’ll notice in Figure 1-6 that I have a tag tied to the end of the cable. That tag

reminds me which colored wire is which so that I can hook it up correctly. You might

want to do something similar.

These are normally 5-volt devices and are hence TTL compatible. Note, however,

that one of the features of the STM32F103 family of devices is that many of the GPIO pins

are 5-volt tolerant, even though the MCU operates from a +3.3-volt supply. This permits

the use of these TTL adapters without causing harm. More will be said about this later.

Other units can be purchased that operate at the 3.3-volt level or that can switch between

5 and 3.3 volts.

Figure 1-6. A USB-to-TTL serial (5V) adapter cable

Chapter 1 IntroduCtIon

14

 Power Supply
Most of the projects presented will run just fine off of the USB or TTL adapter power

output. But if your project draws more than the usual amount of current, then you may

need a power adapter. Figure 1-7 illustrates a good adapter to fit the breadboard power

rails. It can be purchased from eBay for about $1.00 US with free shipping. Mine was

advertised as “MB102 Solderless Breadboard Power Supply Module, 3.3V 5V for Arduino

PCB Board.” If your breadboard lacks power rails, you may need to shop for a different

type of breadboard.

The MB102 is convenient because it can be jumpered to supply 3.3 or 5 volts.

Additionally, it includes a power on/off button.

The other consideration is the wall adapter to supply the input power (this is not

included). While the MB102 accepts up to 12 volts of input, I found that most 9 VDC

wall adapters had an open circuit voltage near 13 volts or more. I feel that those are risky

because if the cheap MB102 fails for any reason, the over-voltage might leak through and

damage your MCU unit(s) as well.

Foraging through my junk box of “wall warts,” I eventually found an old Ericsson

phone charger rated at 7.5 VDC at 600 mA. It measured an unloaded voltage of 7.940

volts. This is much closer to the 5 and 3.3 volt outputs that the MB102 will regulate to. If

you have to purchase a power adapter, I recommend a similar unit.

Figure 1-7. A small breadboard power supply and 7.5 VDC adapter

Chapter 1 IntroduCtIon

15

 Small Stuff
There are some small items that you may already have. Otherwise, you will need to get

some LEDs and resistors for project use. Figure 1-8 shows a random set of LEDs and a

SIP-9 resistor.

Usually an LED is targeted for about 10 mA of current for normal brightness. Smaller

LEDs only require maybe 2 to 5 mA. With a supply voltage near 3.3 volts, you’ll want a

resistor of about 220 Ω to limit the current (220 ohms limits the current to a maximum of

approximately 7 mA). So, get a few 220 Ω resistors (1/8th watt will be sufficient).

Another part you may want to consider stocking is the SIP-9 resistor. Figure 1-9

illustrates the internal schematic for this part. If, for example, you want to drive eight

LEDs, you would need eight current-limiting resistors. Individual resistors work but

require extra wiring and take up breadboard space. The SIP-9 resistor, on the other hand,

has one connection common to the eight resistors. The other eight connections are the

other end of the internal resistors. Using this type of package, you can reduce the parts

count and wiring required.

Figure 1-8. A random collection of 5 mm LEDs and one SIP-9 resistor at the bottom

Chapter 1 IntroduCtIon

16

 Summary
This chapter has introduced the main actors that will appear in this book. It also

itemized most of the things that you might need to acquire. The next chapter will guide

you through the necessary steps of software installation. Once that is out of the way, the

real fun can begin.

Figure 1-9. The internal schematic view of a SIP-9 resistor

Chapter 1 IntroduCtIon

27
© Warren Gay 2018
W. Gay, Beginning STM32, https://doi.org/10.1007/978-1-4842-3624-6_3

CHAPTER 3

Power Up and Blink
The unit that you purchased has likely already been preprogrammed to blink when it is

powered up (perhaps you’ve checked this already). This makes it easy to test that it is a

working unit. There are a few other important details regarding power, reset, and LEDs

that need to be discussed in this chapter. Finally, the use of the ST-Link V2 programmer

and a device probe will be covered.

 Power
The STM32F103C8T6 PCB, otherwise known as the “Blue Pill” board, has a number

of connections, including a few for power. It is not necessary to use all of the power

connections at once. In fact, it is best to use only one set of connections. To clarify this

point, let’s begin with an examination of your power options. Figure 3-1 illustrates the

connections around the edges of the PCB, including power.

28

The four pins at the top end of the board (darker blue) are used for programming the

device. Notice that the programming connection labeled DIO is also capable of being

a GPIO PA13. Likewise, DCLK is capable of being a GPIO PA14. You’ll discover how

configurable the STM32 can be as we go through this book.

At the programming connector, note that the input supply voltage is +3.3 volts. This

connection is electrically the same as any of the others that are labeled “+3.3V” around

the PCB. These are shown in a light orange.

Figure 3-1. Power and GPIO connections to the STM32F103C8T6 “Blue Pill”
PCB. Power can be supplied to a +5V, +3.3V, or USB port, with the matching
voltage. Pins marked as “5V” (with no plus sign) are 5-volt tolerant inputs. Pins
marked with a plus sign are for power input.

Chapter 3 power Up and Blink

29

 +3.3V Regulator
The STM32F103C8T6 chip is designed to operate from any voltage from 2 to 3.3 volts.

The Blue Pill PCB provides a tiny +3.3-volt regulator labeled “U1” on the underside

(see Figure 3-2). My unit used a regulator with an SMD code of 4A2D, which is an

XC6204 series part. Yours may vary.

The official schematic for this board specifies the regulator as being the RT9193-33,

which supports 300 mA.1 It is possible that my PCB is a clone using a cheaper regulator

chip. My XC6204 series regulator chip is limited to 150 mA. Unless you know the

specifics of your unit, it is safest to assume 150 mA is the current limit.

The power performance of the MCU will be examined in a later chapter. But as a

starting reference point, the blink program in the device as supplied uses about 30 mA

(measured with the +5-volt input supply at 4.97 volts). This measurement includes the

small additional current used by the regulator itself.

The datasheet for the STM32F103C8T6 documents the maximum current draw at

about 50 mA. This document measurement was obtained with the external clock and

Figure 3-2. The +3.3-volt regulator on the underside of the PCB. Pin 1 of the 4A2D
(XC6204 series) regulator chip is marked.

Chapter 3 power Up and Blink

30

all peripherals enabled, while operating in “run mode” at 72 MHz. Subtracting 50 from

your regulator max of 150 leaves you a current budget of about 100 mA from the +3.3-volt

regulator. It’s always good to know what the limits are!

 USB Power/+5V
When powered by a USB cable, the power arrives by the Micro-USB B connector. This

+5-volt supply is regulated to the +3.3 volts needed by the MCU. Similarly, at the top

right of Figure 3-1, there is a pin labelled “+5V” (with a plus sign), which can be used as a

power input. This goes to the same regulator input that the USB connector supplies.

Because of the low current requirements of your MCU, you can also power the unit

from a TTL serial adapter. Many USB serial adapters will have a +5-volt line available that

can supply your MCU. Check your serial adapter for specifications to be certain.

Be careful not to connect a USB cable and supply +5 volts simultaneously. Doing so

could cause damage to your desktop/laptop through the USB cable. For example, if your

+5-volt supply is slightly higher in voltage, you will be injecting current into your desktop

USB circuit.

 +3.3V Supply
If you have a +3.3-volt power supply, you can leave the +5V inputs unconnected. Connect

your +3.3-volt power supply directly to the +3.3V input (make sure that the USB cable

is unplugged). This works because the regulator disables itself when there is no input

provided on the 5-volt input.

When supplying power to the +3.3-volt input, you are connecting your power to the

VOUT terminal of the regulator shown in Figure 3-3. In this case, there is no 5-volt power

flowing into VIN of the regulator. The CE pin is also connected to VIN, but when VIN is

unconnected, the CE pin becomes grounded by a capacitor. A low level on CE causes the

regulator to shut down its internal subsystems.

Chapter 3 power Up and Blink

31

There is, however, a small amount of current flow into the regulator’s voltage divider.

This current will flow from your +3.3 volts to ground, through internal resistances R1 and

R2 of the regulator. These resistances are high, and the current involved is negligible. But

be aware of this when measuring current for ultra-low-power battery applications.

Caution do not supply both +5 volts and +3.3 volts at the same time. this could
cause damage to the regulator or your desktop when the USB cable is plugged in.
Use a single power source.

 One Power Source Rule
What I’ve been leading up to is the general advice to use just one power source. I can’t

stress enough that supplying your PCB with more than one power source can cause

damage.

This tends to be obvious with the +3.3-volt and +5-volt supply inputs. What can easily

be forgotten, however, is the USB cable. Consider that you could have power arriving

from a USB serial adapter, the ST-Link V2 programmer, or the USB cable. Move slowly

when changing your power arrangement, especially when switching from programming

the device to your normal power configuration.

Figure 3-3. Block diagram of the 5 to 3.3 volt regulator

Chapter 3 power Up and Blink

32

Certain applications may require you to use additional supplies; for example, when

powering motors or relays. In those cases, you would supply the external circuits with the

power they need but not the MCU PCB. Only the signals and the ground need to share

connections. If this isn’t clear, then assume the one power source rule.

 Ground
The return side of the power circuit, or the negative side, is known as the ground

connection. It is labeled in Figure 3-1 in black. All of these ground connections are

electrically connected together. These pins can be used interchangeably.

 Reset
The PCB also supplies a button labeled “RESET” and a connection on one side labeled

“R.” This connection permits an external circuit to reset the MCU if required. Figure 3-4

illustrates the push-button circuit, including the connection going to the MCU.

 Showtime
You’ve probably already tested your unit, but if you haven’t yet then do so now. The

safest and easiest way to do this is to use a USB cable with a Micro-USB B connector.

Plug your cable into a USB power source, which doesn’t have to be a computer.

Figure 3-4. The STM32F103C8T6 Reset circuit. Connection “R” is found on the
edge of the PCB.

Chapter 3 power Up and Blink

33

Once powered, your unit should blink away. If not, then try pressing the Reset button.

Also make sure that your boot-0 and boot-1 jumpers are positioned as shown in Figure 3-1

(both jumpers should be positioned to the side labeled “0”).

There are two built-in LEDs. The LED on the left indicates that power has been

applied (mine was yellow, but yours may differ). The LED at right is activated by GPIO

port PC13 under program control (mine was red; again, yours may differ).

Caution Some have reported having their USB connector break off of the
pCB. Be gentle inserting the Micro-USB B cable end.

If you are currently lacking a suitable USB cable, you can try the unit out if you can

supply either +5 volts or +3.3 volts to the appropriate connection as discussed. Even a pair

of dry cells in series for +3 volts will do (recall that this MCU will function on 2 to 3.3 volts).

Figure 3-5 illustrates the unit’s being powered from the +3.3-volt connection at the

top of the PCB where the programmer connects. Be careful when using alligator clips,

ensuring they don’t short to other pins. DuPont wires can be used with greater safety.

Figure 3-5. The STM32F108C8T6 blinking and powered by a HP 6284A power
supply using the top header strip (+3.3 volts)

Chapter 3 power Up and Blink

34

 ST-Link V2
The next item to check off our list in this chapter is to hook up and run the st-info

utility. When you get your programmer, you will likely just get four DuPont wires with

female ends. This isn’t real convenient but does work if you wire it correctly. If you

switch devices to be programmed frequently, you’ll want to make a custom cable for the

purpose. The programmer hookup diagram is shown in Figure 3-6. It has been reported

that different models of the programmer are available using different connections and

wiring.

With the programmer hooked up according to Figure 3-6, check your boot-0 and

boot-1 jumpers located beside the Reset button. These should appear as they do in

Figure 3-1 (with both jumpers close to the side marked “0”).

Figure 3-6. ST-LINK V2 programmer hookup to STM32F103C8T6 device. Check
the connections on the device you have, assome ST-Link programmers are different.

Chapter 3 power Up and Blink

35

Plug your ST-Link V2 programmer into a USB port or use a USB extension cable.

Once you do this, the power LED should immediately light. Also, the PC13 LED should

also blink if your unit still has the blink program in it. Figure 3-7 illustrates the setup.

Figure 3-7. ST-Link V2 programmer using a USB extension cable, hooked up to
the STM32F103C8T6 using DuPont wires

Chapter 3 power Up and Blink

73
© Warren Gay 2018
W. Gay, Beginning STM32, https://doi.org/10.1007/978-1-4842-3624-6_6

CHAPTER 6

USART
The Blue Pill PCB provides one GPIO-controlled LED to communicate by. Needless to

say, this would be limiting if it were all you had. Perhaps the best early-development

peripheral to pursue for communication is the USART (Universal Synchronous/

Asynchronous Receiver/Transmitter).

This chapter will examine how to coax a STM32 USART to speak to your desktop

through a USB serial adapter cable. A second project will demonstrate the same USART

using two FreeRTOS tasks and a message queue.

 USART/UART Peripheral
Within this book and technical literature at large, you will see the terms USART and

UART used almost interchangeably. The difference between the two is in capability:

USART is short for Universal Synchronous/Asynchronous Receiver/Transmitter. The

UART moniker drops the synchronous function from the designation.

USART/UART peripherals send data serially over a wire. One wire is used for

sending (TX) and another for receiving (RX) data. There is implied a common-ground

connection between the two endpoints. Synchronous communication sometimes

requires one end to act as the master and provide a clock signal. Asynchronous

communication does not use a separate clock signal but does require both ends to agree

precisely on a clock rate—known as the baud rate. Asynchronous communication begins

with a start bit and ends with a stop bit for each character.

The USART peripherals provided by the STM32F103 are quite flexible. These can

indeed function as USART or UART, depending upon configuration. This chapter will

focus on the asynchronous mode for simplicity, and thus the name UART applies to the

remainder of this chapter.

74

 Asynchronous Data
Figure 6-1 provides an annotated scope trace of an asynchronous byte 0x65 being

transmitted. This TTL (Transistor Transistor Logic) signal starts at the left with the line

idle high (near 5 volts). The beginning of the character is marked by a low bit (near zero

volts), known as the start bit. This alerts the receiver that data bits are following, with the

least significant bits first (little endian). This example was an 8-bit value. The end of the

character is marked by a stop bit. If the stop bit is not seen by the receiver, then an error

is flagged.

Values being sent can be configured to be 8 or 9 bits in length. The last bit is the

parity bit when enabled. The stop bit(s) end the transmission of a character and are

configured as 0.5, 1, 1.5, or 2 bits in length.

 USB Serial Adapters
A USB TTL serial adapter is an extremely helpful thing to own when working with

microcontrollers. With very little hookup, you can use a terminal program on your

desktop to communicate with your STM32. This eliminates the need for a costly LCD

screen and keyboard.

Figure 6-1. Annotated scope trace of the UART signal for the value 0x65. Note how
the least significant bits are sent first.

Chapter 6 USart

75

If you haven’t acquired one yet, here are some guidelines for what to look for:

• It must be a “TTL” adapter (signals at +5 volts or +3.3 volts).

• The USB device is supported by your operating system.

• The unit supports hardware flow control (RTS and CTS).

The TTL distinction is important. Normal RS-232 adapters operate at plus and minus

about 3 volts or more. These cannot be wired directly to your STM32.

The TTL serial adapters, on the other hand, signal between zero and +5 volts and can

be used with any of the 5-volt-tolerant inputs. Fortunately, ST Microelectronics arranged

that the receive line (RX) for UART 1 and 3 has 5-volt-tolerant inputs. Sending from the

3.3-volt STM32 works fine because the high signal is well above the threshold needed to

be received as a 1-bit by the adapter.

Figure 6-2 illustrates one that is used by the author. These can be purchased for

around $3 US on eBay. Be sure to get a unit that supports hardware flow control. These

will include connections for RTS and CTS. Without hardware flow control, you won’t be

able to support higher rates like 115,200 baud without losing data. Be careful about FTDI

units. In the past there have been reports of FTDI (FTDI Chip) drivers bricking FTDI

clones. It is best to get a genuine FTDI unit or to avoid units claiming FTDI compatibility.

Chapter 6 USart

76

 Hookup
The two projects featured in this chapter require you to attach a USB TTL serial adapter

so that your desktop can view the output. Figure 6-3 shows the hookup required.

Figure 6-2. Example USB TTL serial adapter cable. A tag was added as a colored-
wires legend.

Chapter 6 USart

77

The baud rate used in this chapter is 38,400, which is a relatively low speed. This allows

us to avoid flow control for simplicity for our first demo. You should be able to power your

device from the serial adapter’s +5 volt line, as shown. Connect that supply to the +5 volt

input on your Blue Pill so that the onboard regulator will provide the MCU 3.3 volts.

If this is not possible, then power the device separately. Be sure to make a common

ground connection between the power source, the MCU, and the serial adapter.

Finally, note that only one data connection is required for these particular demos.

This is because these demonstration programs only transmit and do not receive data

from the desktop.

Figure 6-3. USB TTL serial hookup for outgoing communication. No flow control
is used in this example.

Chapter 6 USart

97
© Warren Gay 2018
W. Gay, Beginning STM32, https://doi.org/10.1007/978-1-4842-3624-6_7

CHAPTER 7

USB Serial
One of the nice things about the STM32 MCU is the availability of the USB (Universal

Serial Bus) peripheral. With USB, it is possible to communicate directly with a desktop

platform in various modes. One of these flexible modes is USB’s emulation of a serial link

between the MCU and the desktop.

This chapter will explore the use of libopencm3 and FreeRTOS working together

to provide a convenient means of communication. You will use the USB CDC class of

operation (USB communication device class). This provides a very convenient means for

interacting with your Blue Pill.

 Blue Pill USB Issue
First, let’s clear the air about the Blue Pill USB issue. What is this issue you may have read

about in the Internet forums?

It turns out that the PCB is manufactured with a 10 kohm resistor (R10) pullup

resistor to +3.3 volts, which is incorrect. For full-speed USB, this is supposed to be 1.5

kohm. You can test this by measuring resistance with your DMM between the A12 pin on

the PCB and the +3.3-volt pin. You will likely read 10 kohms.

This defect does not always prevent it from working, however. For example, I had

no difficulty using USB from the STM32 to a MacBook Pro. But your mileage may vary.

The hard way to correct this is to replace R10 on the PCB, but this is difficult because the

resistor is so incredibly small.

Caution Many people have reported in online forums that their Blue Pill USB
connector has broken off or become inoperable. Exercise extra-gentle care when
inserting the cable.

98

Correction of the issue is best accomplished by placing another resistor in parallel

with it. Placing a 1.8 kohm resistor in parallel with the 10 kohm resistor produces a

combined resistance of 1.5 kohms. Figure 7-1 illustrates how the author soldered a

resistor to one of his units. The 1/8-Watt resistor is simply soldered carefully between

pins A12 and the +3.3-volt pin. It’s not pretty, but it works!

Figure 7-1. Correcting the USB pullup by addition of a 1.8-kohm resistor

To see how pullup resistance makes a difference, look at the scope trace in Figure 7- 2.

This is what the D+ line looked like with the default 10-kohm resistor.

Figure 7-2. D+ line scope trace using 10-kohm pullup resistance

In the figure, you can see a rise at the start followed by a slump to perhaps the 70

percent level. To the right where the high-frequency signals begin, you can see that the

signal rests at about the 70 percent level in between excursions. Attach this device to a

different PC USB port or hub and the degradation might be worse.

ChaPtEr 7 USB SErial

99

Compare this to Figure 7-3, which is a scope trace after the 1.5-kohm pullup

resistance was in effect.

Figure 7-3. D+ line scope trace with 1.5-kohm pullup resistance

Ignoring capture-timing differences, you can see that the signal rests much higher,

perhaps at the 90 percent level. This helps to assure improved signal thresholds.

 Introduction to USB
USB is a popular means of communication from a personal computer to various

peripherals, such as printers, scanners, keyboards, and a mouse. Part of its success is due

to its standardization and low cost. The standard also includes USB hubs allowing the

cost-effective extension of the network to accommodate additional devices.

In USB communication, the host directs all traffic. Each device is polled on a regular

basis based upon its configuration and requirements. A keyboard infrequently needs to

send data, for example, while a sound-recording device needs to send bulk recording

data in real time. These differences are accommodated by the USB standard and are part

of the device configuration.

 Pipes and Endpoints
USB uses the concept of endpoints with connecting pipes to carry the data. The pipe

carries the information, while the endpoints send or receive. Every USB device has at

least one endpoint known as endpoint 0. This is a default and control endpoint, which

allows host and device to configure device-specific operations and parameters. This

occurs during device enumeration.

ChaPtEr 7 USB SErial

100

Figure 7-4 provides a high-level view of endpoints 0, 1, and 2 that we will be using

in the example program. Technically, endpoint 0 is just one pipe. It is drawn here as

two pipes because the control endpoint permits a response back to the host. All other

endpoints have data travelling in one direction only. Note that the “In” and “Out” in

Figure 7-4 are labeled according to the host controller’s viewpoint.

Figure 7-4. USB pipes and endpoints

A device may have additional endpoints, but our USB CDC example only needs two

in addition to the required control endpoint 0:

• Endpoint 1 is the device’s receiving endpoint (host’s sending,

specified as 0x01)

• Endpoint 2 is the device’s sending endpoint (host’s receiving,

specified as 0x82)

As will be seen in the source code, bit 7 of the endpoint number indicates whether

it is an input or output (with respect to the host controller). The value 0x82 indicates in

hexadecimal that endpoint 2 (with bit 7) is sending (from the device’s point of view).

Unlike a TCP/IP socket, USB pipes transfer data in one direction only.

ChaPtEr 7 USB SErial

101

As you may have realized, one potentially confusing aspect of USB programming is

that input and output are specified in the code from the host controller’s point of view.

For example, endpoint 0x82 is a receiving (input) endpoint from the host’s point of view.

This tends to be confusing when writing for the device. Be aware of that when setting up

USB descriptors.

This necessarily has been a brief introduction to USB. Entire books have been written

on the subject, and the interested reader is encouraged to seek them out. Our focus will

be limited to the successful use of the USB peripheral for the benefit of our STM32. Let’s

get started!

 USB Serial Device
With the MCU flashed and plugged into the system, you need to access it on your

operating system as a serial device. This practice varies with the operating system, which

complicates things slightly. The MCU source code is found in the following directory:

$ cd ~/stm32f103c8t6/rtos/usbcdcdemo

$ make clobber

$ make

$ make flash

The preceding steps will build and flash the code into your MCU device. The

following sections will describe details on the desktop side of the USB conduit.

 Linux USB Serial Device
Under Linux, with the STM32 flashed and plugged into a USB port, you can use the

lsusb command to view the connected devices:

$ lsusb

Bus 002 Device 003: ID 0483:5740 STMicroelectronics STM32F407

ChaPtEr 7 USB SErial

102

In this example, I only had one device. Don’t be worried about the STM32F407

designation. This is just the description given to the device ID 0483:5740 that ST

Microelectronics registered. But how do you find out what device path to use? Try the

following after plugging in your cable:

$ dmesg | grep 'USB ACM device'

[709.468447] cdc_acm 2-7:1.0: ttyACM0: USB ACM device

This is obviously not very user friendly, but from this you find that the device name is

/dev/ttyACM0. Listing it confirms this:

$ ls -l /dev/ttyACM0

crw-rw---- 1 root dialout 166, 0 Jan 25 23:38 /dev/ttyACM0

The next problem is having permissions to use the device. Notice that the group for

the device is dialout. Add yourself to the dialout group (substitute fred with your own

user ID):

$ sudo usermod -a -G dialout fred

Log out and log in again to verify that you have the correct group:

$ id

uid=1000(fred) gid=1000(fred) groups=1000(fred),20(dialout),24(cdrom),...

Being a member of the dialout group saves you from having to use root access to

access the serial device.

 MacOS USB Serial Device
Perhaps the simplest way to find the USB device under MacOS is to simply list the callout

devices:

$ ls -l /dev/cu.*

crw-rw-rw- 1 root wheel 35, 1 6 Jan 15:14 /dev/cu.Bluetooth-Incoming-Port

crw-rw-rw- 1 root wheel 35, 3 6 Jan 15:14 /dev/cu.FredsiPhone-Wireless

crw-rw-rw- 1 root wheel 35, 45 26 Jan 00:01 /dev/cu.usbmodemFD12411

For the USB demo, the new device will appear as something like the path /dev/

cu.usbmodemFD12411. The device number may vary, so look for cu.usbmodem in the

pathname. Notice that all permissions are given.

ChaPtEr 7 USB SErial

103

 Windows USB Serial Device
Serial devices under Windows show up as COM devices in the Device Manager once the

cable is plugged in and the driver is installed. Figure 7-5 is an example screenshot.

Figure 7-5. Example Windows Device Manager dialog

In this example, the USB device is attached as Windows port COM3. If you’re using

Cygwin under Windows, the device pathname is /dev/ttyS2 (subtract 1 from the COM

port number).

 USB GPIO
The STMF103 series only supports USB on GPIO pins PA11 (USB_DM) and PA12 (USB_DP).

There are no alternate configurations for USB. Further, there is no need to configure

PA11 and PA12, because these are automatically taken over when the USB peripheral is

enabled.1 This is the only peripheral that I am aware of that behaves this way and is a tiny

detail hidden in the reference manual RM0008 about alternate configurations. You do,

however, need to enable the clocks for GPIOA and the USB peripheral.

ChaPtEr 7 USB SErial

