#include #include #include #include #define NAND_SIM "nand.bin" #if 1 #define OOB_SIZE 64 #define PAGE_SIZE (2048 + 64) #define PAGE_PER_BLOCK 64 #define BLOCK_SIZE (PAGE_SIZE * PAGE_PER_BLOCK) #define BLOCK_NUM 512 // #define BLOCK_NUM 2048 #else #define OOB_SIZE 16 #define PAGE_SIZE (512 + OOB_SIZE) #define PAGE_PER_BLOCK 32 #define BLOCK_SIZE (PAGE_SIZE * PAGE_PER_BLOCK) #define BLOCK_NUM 512 #endif static unsigned char block_data[BLOCK_SIZE]; static struct rt_mtd_nand_device _nanddrv_file_device; static FILE *file = NULL; static rt_uint8_t CountBitsInByte(rt_uint8_t byte) { rt_uint8_t count = 0; while (byte > 0) { if (byte & 1) { count++; } byte >>= 1; } return count; } static void Compute256(const rt_uint8_t *data, rt_uint8_t *code) { rt_uint32_t i; rt_uint8_t columnSum = 0; rt_uint8_t evenLineCode = 0; rt_uint8_t oddLineCode = 0; rt_uint8_t evenColumnCode = 0; rt_uint8_t oddColumnCode = 0; // Xor all bytes together to get the column sum; // At the same time, calculate the even and odd line codes for (i = 0; i < 256; i++) { columnSum ^= data[i]; // If the xor sum of the byte is 0, then this byte has no incidence on // the computed code; so check if the sum is 1. if ((CountBitsInByte(data[i]) & 1) == 1) { // Parity groups are formed by forcing a particular index bit to 0 // (even) or 1 (odd). // Example on one byte: // // bits (dec) 7 6 5 4 3 2 1 0 // (bin) 111 110 101 100 011 010 001 000 // '---'---'---'----------. // | // groups P4' ooooooooooooooo eeeeeeeeeeeeeee P4 | // P2' ooooooo eeeeeee ooooooo eeeeeee P2 | // P1' ooo eee ooo eee ooo eee ooo eee P1 | // | // We can see that: | // - P4 -> bit 2 of index is 0 --------------------' // - P4' -> bit 2 of index is 1. // - P2 -> bit 1 of index if 0. // - etc... // We deduce that a bit position has an impact on all even Px if // the log2(x)nth bit of its index is 0 // ex: log2(4) = 2, bit2 of the index must be 0 (-> 0 1 2 3) // and on all odd Px' if the log2(x)nth bit of its index is 1 // ex: log2(2) = 1, bit1 of the index must be 1 (-> 0 1 4 5) // // As such, we calculate all the possible Px and Px' values at the // same time in two variables, evenLineCode and oddLineCode, such as // evenLineCode bits: P128 P64 P32 P16 P8 P4 P2 P1 // oddLineCode bits: P128' P64' P32' P16' P8' P4' P2' P1' // evenLineCode ^= (255 - i); oddLineCode ^= i; } } // At this point, we have the line parities, and the column sum. First, We // must caculate the parity group values on the column sum. for (i = 0; i < 8; i++) { if (columnSum & 1) { evenColumnCode ^= (7 - i); oddColumnCode ^= i; } columnSum >>= 1; } // Now, we must interleave the parity values, to obtain the following layout: // Code[0] = Line1 // Code[1] = Line2 // Code[2] = Column // Line = Px' Px P(x-1)- P(x-1) ... // Column = P4' P4 P2' P2 P1' P1 PadBit PadBit code[0] = 0; code[1] = 0; code[2] = 0; for (i = 0; i < 4; i++) { code[0] <<= 2; code[1] <<= 2; code[2] <<= 2; // Line 1 if ((oddLineCode & 0x80) != 0) { code[0] |= 2; } if ((evenLineCode & 0x80) != 0) { code[0] |= 1; } // Line 2 if ((oddLineCode & 0x08) != 0) { code[1] |= 2; } if ((evenLineCode & 0x08) != 0) { code[1] |= 1; } // Column if ((oddColumnCode & 0x04) != 0) { code[2] |= 2; } if ((evenColumnCode & 0x04) != 0) { code[2] |= 1; } oddLineCode <<= 1; evenLineCode <<= 1; oddColumnCode <<= 1; evenColumnCode <<= 1; } // Invert codes (linux compatibility) code[0] = (~(rt_uint32_t)code[0]); code[1] = (~(rt_uint32_t)code[1]); code[2] = (~(rt_uint32_t)code[2]); } void ecc_hamming_compute256x(const rt_uint8_t *pucData, rt_uint32_t dwSize, rt_uint8_t *puCode) { while (dwSize > 0) { Compute256(pucData, puCode) ; pucData += 256; puCode += 3; dwSize -= 256; } } /* read chip id */ static rt_uint32_t nanddrv_file_read_id(struct rt_mtd_nand_device *device) { return 0x00; } /* read/write/move page */ static rt_err_t nanddrv_file_read_page(struct rt_mtd_nand_device *device, rt_off_t page, rt_uint8_t *data, rt_uint32_t data_len, rt_uint8_t *spare, rt_uint32_t spare_len) { rt_uint32_t offset; rt_uint8_t oob_buffer[OOB_SIZE]; rt_uint8_t oob_ecc [OOB_SIZE]; page = page + device->block_start * device->pages_per_block; if (page / device->pages_per_block > device->block_end) { return -RT_EIO; } /* write page */ offset = page * PAGE_SIZE; if (data != NULL) { fseek(file, offset, SEEK_SET); fread(data, data_len, 1, file); } offset = page * PAGE_SIZE + (PAGE_SIZE - OOB_SIZE); fseek(file, offset, SEEK_SET); fread(oob_buffer, OOB_SIZE, 1, file); if (spare != NULL) { memcpy(spare, oob_buffer, spare_len); } /* verify ECC */ if (data != RT_NULL) { ecc_hamming_compute256x(data, PAGE_SIZE - OOB_SIZE, &oob_ecc[0]); if (memcmp(&oob_ecc[0], &oob_buffer[0], OOB_SIZE - device->oob_free) != 0) return -RT_MTD_EECC; } return RT_EOK; } static rt_err_t nanddrv_file_write_page(struct rt_mtd_nand_device *device, rt_off_t page, const rt_uint8_t *data, rt_uint32_t data_len, const rt_uint8_t *oob, rt_uint32_t spare_len) { rt_uint32_t offset; rt_uint8_t oob_buffer[OOB_SIZE]; page = page + device->block_start * device->pages_per_block; if (page / device->pages_per_block > device->block_end) { return -RT_EIO; } /* write page */ offset = page * PAGE_SIZE; if (data != NULL) { fseek(file, offset, SEEK_SET); fwrite(data, PAGE_SIZE - OOB_SIZE, 1, file); } offset = page * PAGE_SIZE + (PAGE_SIZE - OOB_SIZE); fseek(file, offset, SEEK_SET); memset(oob_buffer, 0xff, sizeof(oob_buffer)); ecc_hamming_compute256x(data, PAGE_SIZE - OOB_SIZE, &oob_buffer[0]); if (oob != RT_NULL) { memcpy(&oob_buffer[OOB_SIZE - device->oob_free], &oob[OOB_SIZE - device->oob_free], device->oob_free); } fwrite(oob_buffer, OOB_SIZE, 1, file); return RT_EOK; } static rt_err_t nanddrv_file_move_page(struct rt_mtd_nand_device *device, rt_off_t from, rt_off_t to) { rt_uint32_t offset; rt_uint8_t page_buffer[PAGE_SIZE - OOB_SIZE]; rt_uint8_t oob_buffer[OOB_SIZE]; from = from + device->block_start * device->pages_per_block; to = to + device->block_start * device->pages_per_block; if (from / device->pages_per_block > device->block_end || to / device->pages_per_block > device->block_end) { return -RT_EIO; } if (device->plane_num > 1) { rt_uint32_t mask; rt_uint16_t from_block, to_block; from_block = (rt_uint16_t)(from / PAGE_PER_BLOCK); to_block = (rt_uint16_t)(to / PAGE_PER_BLOCK); mask = device->plane_num - 1; if ((from_block & mask) != (to_block & mask)) { rt_kprintf("invalid page copy on the block. from [%d] --> to[%d]\n", from_block, to_block); return -RT_EIO; } } /* read page */ offset = from * PAGE_SIZE; fseek(file, offset, SEEK_SET); fread(page_buffer, sizeof(page_buffer), 1, file); fread(oob_buffer, sizeof(oob_buffer), 1, file); /* write page */ offset = to * PAGE_SIZE; fseek(file, offset, SEEK_SET); fwrite(page_buffer, sizeof(page_buffer), 1, file); fwrite(oob_buffer, sizeof(oob_buffer), 1, file); return RT_EOK; } /* erase block */ static rt_err_t nanddrv_file_erase_block(struct rt_mtd_nand_device *device, rt_uint32_t block) { if (block > BLOCK_NUM) return -RT_EIO; /* add the start blocks */ block = block + device->block_start * device->pages_per_block; fseek(file, block * BLOCK_SIZE, SEEK_SET); fwrite(block_data, sizeof(block_data), 1, file); return RT_EOK; } const static struct rt_mtd_nand_driver_ops _ops = { nanddrv_file_read_id, nanddrv_file_read_page, nanddrv_file_write_page, nanddrv_file_move_page, nanddrv_file_erase_block }; void nand_eraseall(void); void rt_hw_mtd_nand_init(void) { rt_uint16_t ecc_size; rt_uint32_t size; memset(block_data, 0xff, sizeof(block_data)); /* open file */ file = fopen(NAND_SIM, "rb+"); if (file == NULL) { file = fopen(NAND_SIM, "wb+"); } fseek(file, 0, SEEK_END); size = ftell(file); fseek(file, 0, SEEK_SET); if (size < BLOCK_NUM * BLOCK_SIZE) { rt_uint32_t index; fseek(file, 0, SEEK_SET); for (index = 0; index < BLOCK_NUM; index ++) { fwrite(block_data, sizeof(block_data), 1, file); } } fseek(file, 0, SEEK_SET); ecc_size = (PAGE_SIZE - OOB_SIZE) * 3 / 256; _nanddrv_file_device.plane_num = 2; _nanddrv_file_device.oob_size = OOB_SIZE; _nanddrv_file_device.oob_free = OOB_SIZE - ecc_size; _nanddrv_file_device.page_size = PAGE_SIZE - OOB_SIZE; _nanddrv_file_device.pages_per_block = PAGE_PER_BLOCK; _nanddrv_file_device.block_start = 0; _nanddrv_file_device.block_end = BLOCK_NUM / 2; _nanddrv_file_device.block_total = _nanddrv_file_device.block_end - _nanddrv_file_device.block_start; _nanddrv_file_device.ops = &_ops; rt_mtd_nand_register_device("nand0", &_nanddrv_file_device); } #if defined(RT_USING_FINSH) #include void nand_eraseall() { int index; for (index = 0; index < _nanddrv_file_device.block_total; index ++) { nanddrv_file_erase_block(&_nanddrv_file_device, index); } } FINSH_FUNCTION_EXPORT(nand_eraseall, erase all of block in the nand flash); #if 0 void nand_log(int level) { nftl_set_trace_level(level); } FINSH_FUNCTION_EXPORT(nand_log, set NFTL trace level); #endif #endif //RT_USING_FINSH