/* * Copyright (C) 2001-2004 by David Brownell * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* this file is part of ehci-hcd.c */ /*-------------------------------------------------------------------------*/ /* * EHCI hardware queue manipulation ... the core. QH/QTD manipulation. * * Control, bulk, and interrupt traffic all use "qh" lists. They list "qtd" * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned * buffers needed for the larger number). We use one QH per endpoint, queue * multiple urbs (all three types) per endpoint. URBs may need several qtds. * * ISO traffic uses "ISO TD" (itd, and sitd) records, and (along with * interrupts) needs careful scheduling. Performance improvements can be * an ongoing challenge. That's in "ehci-sched.c". * * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs, * or otherwise through transaction translators (TTs) in USB 2.0 hubs using * (b) special fields in qh entries or (c) split iso entries. TTs will * buffer low/full speed data so the host collects it at high speed. */ /*-------------------------------------------------------------------------*/ /* fill a qtd, returning how much of the buffer we were able to queue up */ // 该函数用于填充qtd结构,并返回当前qtd所承载的数据长度, // 每个qtd有5个pionter,每个pionter最大索引范围4k,因此,每个qtd最大索引5*4k // 该函数填充pionter,把指针与要指向的物理地址关联起来 // #include "sunxi_hal_timer.h" static int qtd_fill(struct ehci_hcd *ehci, struct ehci_qtd *qtd, dma_addr_t buf, size_t len, int token, int maxpacket) { int i, count; u64 addr = buf; /* one buffer entry per 4K ... first might be short or unaligned */ qtd->hw_buf[0] = cpu_to_hc32(ehci, (u32)addr); qtd->hw_buf_hi[0] = cpu_to_hc32(ehci, (u32)(addr >> 32)); count = 0x1000 - (buf & 0x0fff); /* rest of that page */ if (len < count) /* ... iff needed */ count = len; else { buf += 0x1000; buf &= ~0x0fff; /* per-qtd limit: from 16K to 20K (best alignment) */ for (i = 1; count < len && i < 5; i++) { addr = buf; qtd->hw_buf[i] = cpu_to_hc32(ehci, (u32)addr); qtd->hw_buf_hi[i] = cpu_to_hc32(ehci, (u32)(addr >> 32)); buf += 0x1000; if ((count + 0x1000) < len) count += 0x1000; else count = len; } /* short packets may only terminate transfers */ if (count != len) count -= (count % maxpacket); } qtd->hw_token = cpu_to_hc32(ehci, (count << 16) | token); qtd->length = count; EHCI_DEBUG_PRINTF("qtd->hw_token = 0x%lx, qtd->length = 0x%x", qtd->hw_token, qtd->length); return count; } /*-------------------------------------------------------------------------*/ static inline void qh_update (struct ehci_hcd *ehci, struct ehci_qh *qh, struct ehci_qtd *qtd) { struct ehci_qh_hw *hw = qh->hw; /* writes to an active overlay are unsafe */ //WARN_ON(qh->qh_state != QH_STATE_IDLE); hw->hw_qtd_next = QTD_NEXT(ehci, qtd->qtd_dma); hw->hw_alt_next = EHCI_LIST_END(ehci); /* Except for control endpoints, we make hardware maintain data * toggle (like OHCI) ... here (re)initialize the toggle in the QH, * and set the pseudo-toggle in udev. Only usb_clear_halt() will * ever clear it. */ if (!(hw->hw_info1 & cpu_to_hc32(ehci, QH_TOGGLE_CTL))) { unsigned is_out, epnum; is_out = qh->is_out; epnum = (hc32_to_cpup(ehci, &hw->hw_info1) >> 8) & 0x0f; if (!usb_gettoggle(qh->ps.udev, epnum, is_out)) { hw->hw_token &= ~cpu_to_hc32(ehci, QTD_TOGGLE); usb_settoggle(qh->ps.udev, epnum, is_out, 1); } } hw->hw_token &= cpu_to_hc32(ehci, QTD_TOGGLE | QTD_STS_PING); } /* if it weren't for a common silicon quirk (writing the dummy into the qh * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault * recovery (including urb dequeue) would need software changes to a QH... */ static void qh_refresh (struct ehci_hcd *ehci, struct ehci_qh *qh) { struct ehci_qtd *qtd; qtd = list_entry(qh->qtd_list.next, struct ehci_qtd, qtd_list); /* * first qtd may already be partially processed. * If we come here during unlink, the QH overlay region * might have reference to the just unlinked qtd. The * qtd is updated in qh_completions(). Update the QH * overlay here. */ if (qh->hw->hw_token & ACTIVE_BIT(ehci)) { qh->hw->hw_qtd_next = qtd->hw_next; if (qh->should_be_inactive) ehci_warn("qh %p should be inactive!\n", qh); } else { qh_update(ehci, qh, qtd); } qh->should_be_inactive = 0; } /*-------------------------------------------------------------------------*/ static void qh_link_async(struct ehci_hcd *ehci, struct ehci_qh *qh); //static void ehci_clear_tt_buffer_complete(struct usb_hcd *hcd, static void ehci_clear_tt_buffer_complete(struct hc_gen_dev *hcd, struct usb_host_virt_endpoint *ep) { struct ehci_hcd *ehci = hcd_to_ehci(hcd); struct ehci_qh *qh = ep->hcpriv; unsigned long flags; flags = hal_spin_lock_irqsave(&ehci->lock); qh->clearing_tt = 0; if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) qh_link_async(ehci, qh); hal_spin_unlock_irqrestore(&ehci->lock, flags); } //static void ehci_clear_tt_buffer(struct ehci_hcd *ehci, struct ehci_qh *qh, // struct urb *urb, u32 token) //{ // // /* If an async split transaction gets an error or is unlinked, // * the TT buffer may be left in an indeterminate state. We // * have to clear the TT buffer. // * // * Note: this routine is never called for Isochronous transfers. // */ // if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) { ////#ifdef CONFIG_DYNAMIC_DEBUG //// struct usb_device *tt = urb->dev->tt->hub; //// dev_dbg(&tt->dev, //// "clear tt buffer port %d, a%d ep%d t%08x\n", //// urb->dev->ttport, urb->dev->devnum, //// usb_pipeendpoint(urb->pipe), token); ////#endif /* CONFIG_DYNAMIC_DEBUG */ // if (!ehci_is_TDI(ehci) // || urb->dev->tt->hub != // ehci_to_hcd(ehci)->self.root_hub) { // if (usb_hub_clear_tt_buffer(urb) == 0) // qh->clearing_tt = 1; // } else { // // /* REVISIT ARC-derived cores don't clear the root // * hub TT buffer in this way... // */ // } // } //} static int qtd_copy_status ( struct ehci_hcd *ehci, struct urb *urb, size_t length, u32 token ) { int status = -EINPROGRESS; /* count IN/OUT bytes, not SETUP (even short packets) */ if (QTD_PID (token) != 2) urb->actual_length += length - QTD_LENGTH (token); /* don't modify error codes */ //if (unlikely(urb->unlinked)) // return status; /* force cleanup after short read; not always an error */ //if (unlikely (IS_SHORT_READ (token))) // status = -EREMOTEIO; /* serious "can't proceed" faults reported by the hardware */ if (token & QTD_STS_HALT) { if (token & QTD_STS_BABBLE) { /* FIXME "must" disable babbling device's port too */ status = -EOVERFLOW; /* CERR nonzero + halt --> stall */ } else if (QTD_CERR(token)) { status = -EPIPE; /* In theory, more than one of the following bits can be set * since they are sticky and the transaction is retried. * Which to test first is rather arbitrary. */ } else if (token & QTD_STS_MMF) { /* fs/ls interrupt xfer missed the complete-split */ status = -EPROTO; } else if (token & QTD_STS_DBE) { status = (QTD_PID (token) == 1) /* IN ? */ ? -ENOSR /* hc couldn't read data */ : -ECOMM; /* hc couldn't write data */ } else if (token & QTD_STS_XACT) { /* timeout, bad CRC, wrong PID, etc */ //ehci_dbg("devpath %s ep%d%s 3strikes\n", // urb->dev->devpath, // usb_pipeendpoint(urb->pipe), // usb_pipein(urb->pipe) ? "in" : "out"); status = -EPROTO; } else { /* unknown */ status = -EPROTO; } } return status; } static void ehci_urb_done(struct ehci_hcd *ehci, struct urb *urb, int status) { if (usb_pipetype(urb->pipe) == PIPE_INTERRUPT) { /* ... update hc-wide periodic stats */ ehci_to_hcd(ehci)->self.bandwidth_int_reqs--; } if (unlikely(urb->unlinked)) { COUNT(ehci->stats.unlink); } else { /* report non-error and short read status as zero */ if (status == -EINPROGRESS || status == -EREMOTEIO) status = 0; COUNT(ehci->stats.complete); } //#ifdef EHCI_URB_TRACE // ehci_dbg (ehci, // "%s %s urb %p ep%d%s status %d len %d/%d\n", // __func__, urb->dev->devpath, urb, // usb_pipeendpoint (urb->pipe), // usb_pipein (urb->pipe) ? "in" : "out", // status, // urb->actual_length, urb->transfer_buffer_length); //#endif // usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); //usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb, status); if (urb->status == -EINPROGRESS) { urb->status = status; } urb->hcpriv = NULL; usb_hcd_giveback_urb(ehci_to_hcd(ehci), urb); } static int qh_schedule (struct ehci_hcd *ehci, struct ehci_qh *qh); /* * Process and free completed qtds for a qh, returning URBs to drivers. * Chases up to qh->hw_current. Returns nonzero if the caller should * unlink qh. */ // qh_completions()中通过对qh下链接的qtd进行逐个遍历,来判断传输的情况 static unsigned qh_completions(struct ehci_hcd *ehci, struct ehci_qh *qh) { struct ehci_qtd *last, *end = qh->dummy; struct list_head *entry, *tmp; int last_status; int stopped; u8 state; struct ehci_qh_hw *hw = qh->hw; /* completions (or tasks on other cpus) must never clobber HALT * till we've gone through and cleaned everything up, even when * they add urbs to this qh's queue or mark them for unlinking. * * NOTE: unlinking expects to be done in queue order. * * It's a bug for qh->qh_state to be anything other than * QH_STATE_IDLE, unless our caller is scan_async() or * scan_intr(). */ state = qh->qh_state; qh->qh_state = QH_STATE_COMPLETING; stopped = (state == QH_STATE_IDLE); rescan: last = NULL; last_status = -EINPROGRESS; qh->dequeue_during_giveback = 0; /* remove de-activated QTDs from front of queue. * after faults (including short reads), cleanup this urb * then let the queue advance. * if queue is stopped, handles unlinks. */ // list_for_each_safe逐个的把qh上的qtd取出放在指针entry中, // list_for_each_safe的特点是可以中途删除entry,通过指针tmp去找到下一个entry //该语句实际上是一个for循环 list_for_each_safe (entry, tmp, &qh->qtd_list) { struct ehci_qtd *qtd; struct urb *urb; u32 token = 0; //printf("\n"); // 找到对应的qtd内存地址 qtd = list_entry(entry, struct ehci_qtd, qtd_list); urb = qtd->urb; /* clean up any state from previous QTD ...*/ //last初始值是NULL,第一次不执行,跳过if // 当再一次执行到此处时,如果前一次的处理中有qtd是执行完传输的(包括传输出错), // last此时就会指向了前一个qtd,并在if语句中的ehci_qtd_free()函数中把分配的qtd空间释放掉 if (last) { // 一个qtd链表中的urb指针的指向都是相同的,除了最末这一个dummy qtd, // 所以在遍历到最后的qtd时“last->urb != urb”满足 if (likely(last->urb != urb)) { // ehci_urb_done()要做的一件事是回调urb->complete()函数指针, // 从而使控制权回到USB device Driver中,这就是我们填充一个urb的回调函数的触发处 ehci_urb_done(ehci, last->urb, last_status); last_status = -EINPROGRESS; } ehci_qtd_free (ehci, last); // list_add_tail(&(last->qtd_list), &(ehci->wait_free_list)); // hal_log_info("\033[41m ADD : last = 0x%x \033[0m", last); last = NULL; } /* ignore urbs submitted during completions we reported */ // 判断遍历到最后的dummy qtd,就跳出循环,表明整个qtd链表已被处理完了 if (qtd == end) { break; } /* hardware copies qtd out of qh overlay */ //rmb (); // HC在处理完一个qtd后,反映处理结果的值会回写到当前qtd的token字段中, // HCD读取这个token的Status值后,可以获知HC的传输情况 hal_dcache_invalidate((unsigned long)&(((struct ehci_qtd *)(qtd->qtd_dma))->hw_token), sizeof(uint32_t)); token = hc32_to_cpu(ehci, qtd->hw_token); EHCI_DEBUG_PRINTF("token = 0x%lx", token); /* always clean up qtds the hc de-activated */ retry_xacterr: if ((token & QTD_STS_ACTIVE) == 0) { // 传输完成 /* Report Data Buffer Error: non-fatal but useful */ // 在EHCI SPEC里说,不被视作传输错误,会强制endpoint重发一次,所以代码也只是做了打印 if (token & QTD_STS_DBE) { EHCI_DEBUG_PRINTF("detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]", urb, usb_endpoint_num(&urb->ep->desc), usb_endpoint_dir_in(&urb->ep->desc) ? "in" : "out", urb->transfer_buffer_length, qtd, qh); } /* on STALL, error, and short reads this urb must * complete and all its qtds must be recycled. */ if ((token & QTD_STS_HALT) != 0) { // 表明当前qtd的传输出现了错误,而且与该endpoint的传输都被停掉 EHCI_DEBUG_PRINTF("error halt"); /* retry transaction errors until we * reach the software xacterr limit */ // QTD_STS_XACT代表HC没有收到device发回的有效应答包 if ((token & QTD_STS_XACT) && QTD_CERR(token) == 0 && ++qh->xacterrs < QH_XACTERR_MAX && !urb->unlinked) { EHCI_DEBUG_PRINTF("detected XactErr len %zu/%zu retry %d", qtd->length - QTD_LENGTH(token), qtd->length, qh->xacterrs); /* reset the token in the qtd and the * qh overlay (which still contains * the qtd) so that we pick up from * where we left off */ // 出现这样的错误HCD的处理方式是, // 由软件把Halted位清零, // token[11:10] CERR位设为0x3, // Active位置1再次使能该qtd, // 让HC重新传输这个qtd token &= ~QTD_STS_HALT; token |= QTD_STS_ACTIVE | (EHCI_TUNE_CERR << 10); qtd->hw_token = cpu_to_hc32(ehci, token); //wmb(); hw->hw_token = cpu_to_hc32(ehci, token); hal_dcache_clean_invalidate((unsigned long)&(((struct ehci_qtd *)(qtd->qtd_dma))->hw_token), sizeof(uint32_t)); hal_dcache_clean_invalidate((unsigned long)&(((struct ehci_qh_hw *)(qh->qh_dma))->hw_token), sizeof(uint32_t)); // 重复以上动作,直到传输成功或超时为止 goto retry_xacterr; } stopped = 1; qh->unlink_reason |= QH_UNLINK_HALTED; /* magic dummy for some short reads; qh won't advance. * that silicon quirk can kick in with this dummy too. * * other short reads won't stop the queue, including * control transfers (status stage handles that) or * most other single-qtd reads ... the queue stops if * URB_SHORT_NOT_OK was set so the driver submitting * the urbs could clean it up. */ } else if (IS_SHORT_READ (token) && !(qtd->hw_alt_next & EHCI_LIST_END(ehci))) { EHCI_DEBUG_PRINTF("short reads"); stopped = 1; qh->unlink_reason |= QH_UNLINK_SHORT_READ; } /* stop scanning when we reach qtds the hc is using */ } else if (!stopped && ehci->rh_state >= EHCI_RH_RUNNING) { EHCI_DEBUG_PRINTF("stop scanning"); break; /* scan the whole queue for unlinks whenever it stops */ } else { EHCI_DEBUG_PRINTF("stopped"); stopped = 1; /* cancel everything if we halt, suspend, etc */ if (ehci->rh_state < EHCI_RH_RUNNING) { last_status = -ESHUTDOWN; qh->unlink_reason |= QH_UNLINK_SHUTDOWN; } /* this qtd is active; skip it unless a previous qtd * for its urb faulted, or its urb was canceled. */ else if (last_status == -EINPROGRESS && !urb->unlinked) { // else if (last_status == -EINPROGRESS) { continue; } /* * If this was the active qtd when the qh was unlinked * and the overlay's token is active, then the overlay * hasn't been written back to the qtd yet so use its * token instead of the qtd's. After the qtd is * processed and removed, the overlay won't be valid * any more. */ if (state == QH_STATE_IDLE && qh->qtd_list.next == &qtd->qtd_list && (hw->hw_token & ACTIVE_BIT(ehci))) { token = hc32_to_cpu(ehci, hw->hw_token); hw->hw_token &= ~ACTIVE_BIT(ehci); qh->should_be_inactive = 1; /* An unlink may leave an incomplete * async transaction in the TT buffer. * We have to clear it. */ //ehci_clear_tt_buffer(ehci, qh, urb, token); } } /* unless we already know the urb's status, collect qtd status * and update count of bytes transferred. in common short read * cases with only one data qtd (including control transfers), * queue processing won't halt. but with two or more qtds (for * example, with a 32 KB transfer), when the first qtd gets a * short read the second must be removed by hand. */ if (last_status == -EINPROGRESS) { // 读取状态 last_status = qtd_copy_status(ehci, urb, qtd->length, token); if (last_status == -EREMOTEIO && (qtd->hw_alt_next & EHCI_LIST_END(ehci))) { last_status = -EINPROGRESS; } /* As part of low/full-speed endpoint-halt processing * we must clear the TT buffer (11.17.5). */ //if (unlikely(last_status != -EINPROGRESS && // last_status != -EREMOTEIO)) { // /* The TT's in some hubs malfunction when they // * receive this request following a STALL (they // * stop sending isochronous packets). Since a // * STALL can't leave the TT buffer in a busy // * state (if you believe Figures 11-48 - 11-51 // * in the USB 2.0 spec), we won't clear the TT // * buffer in this case. Strictly speaking this // * is a violation of the spec. // */ // if (last_status != -EPIPE) // ehci_clear_tt_buffer(ehci, qh, urb, // token); //} } /* if we're removing something not at the queue head, * patch the hardware queue pointer. */ //如果是qtd链表的首个元素,则qtd->qtd_list.prev == &qh->qtd_list //如果不是首元素,则需要先解链再释放,如是首元素,则不必 if (stopped && qtd->qtd_list.prev != &qh->qtd_list) { //找到上一个qtd的地址 last = list_entry (qtd->qtd_list.prev, struct ehci_qtd, qtd_list); //将上一个qtd的next与本qtd的next链接,即,将本qtd从链表中解链 last->hw_next = qtd->hw_next; hal_dcache_clean_invalidate((unsigned long)&(((struct ehci_qtd *)(last->qtd_dma))->hw_next), sizeof(uint32_t)); hal_dcache_clean_invalidate((unsigned long)&(((struct ehci_qtd *)(qtd->qtd_dma))->hw_next), sizeof(uint32_t)); } /* remove qtd; it's recycled after possible urb completion */ //释放 list_del (&qtd->qtd_list); //记录到last里,下一次循环时真正回收qtd last = qtd; /* reinit the xacterr counter for the next qtd */ qh->xacterrs = 0; }//end of list_for_each_safe(entry, tmp, &qh->qtd_list) /* last urb's completion might still need calling */ // 如果指针last非空,那么一定是指向一个qtd链表队列的末尾处(非dummy qtd) if (last != NULL) { ehci_urb_done(ehci, last->urb, last_status); ehci_qtd_free(ehci, last); // list_add_tail(&(last->qtd_list), &(ehci->wait_free_list)); // hal_log_info("\033[41m ADD : last = 0x%x \033[0m", last); } /* Do we need to rescan for URBs dequeued during a giveback? */ if (unlikely(qh->dequeue_during_giveback)) { /* If the QH is already unlinked, do the rescan now. */ if (state == QH_STATE_IDLE) { EHCI_DEBUG_PRINTF("goto rescan"); goto rescan; } /* Otherwise the caller must unlink the QH. */ } /* restore original state; caller must unlink or relink */ qh->qh_state = state; /* be sure the hardware's done with the qh before refreshing * it after fault cleanup, or recovering from silicon wrongly * overlaying the dummy qtd (which reduces DMA chatter). * * We won't refresh a QH that's linked (after the HC * stopped the queue). That avoids a race: * - HC reads first part of QH; * - CPU updates that first part and the token; * - HC reads rest of that QH, including token * Result: HC gets an inconsistent image, and then * DMAs to/from the wrong memory (corrupting it). * * That should be rare for interrupt transfers, * except maybe high bandwidth ... */ if (stopped != 0 || hw->hw_qtd_next == EHCI_LIST_END(ehci)) { qh->unlink_reason |= QH_UNLINK_DUMMY_OVERLAY; } EHCI_DEBUG_PRINTF("qh->unlink_reason = %u\n", qh->unlink_reason); /* Let the caller know if the QH needs to be unlinked. */ return qh->unlink_reason; } /*-------------------------------------------------------------------------*/ // high bandwidth multiplier, as encoded in highspeed endpoint descriptors #define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03)) // ... and packet size, for any kind of endpoint descriptor #define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff) /* * reverse of qh_urb_transaction: free a list of TDs. * used for cleanup after errors, before HC sees an URB's TDs. */ static void qtd_list_free ( struct ehci_hcd *ehci, struct urb *urb, struct list_head *qtd_list ) { struct list_head *entry, *temp; list_for_each_safe (entry, temp, qtd_list) { struct ehci_qtd *qtd; qtd = list_entry (entry, struct ehci_qtd, qtd_list); list_del (&qtd->qtd_list); ehci_qtd_free (ehci, qtd); } } /* * create a list of filled qtds for this URB; won't link into qh. * 为URB创建并填充qtd列表,但是并未加到qh中 * 一次USB的传输请求是由usb_submit_urb()提交下来的,要传输相关的数据、地址等信息都放在URB中 * qh_urb_transaction()函数就是对URB携带的信息整合到EHCI能识别的数据结构中,即构造相应的qTD */ static struct list_head * qh_urb_transaction ( struct ehci_hcd *ehci, struct urb *urb, struct list_head *head, gfp_t flags ) { struct ehci_qtd *qtd, *qtd_prev; dma_addr_t buf; int len, this_sg_len, maxpacket; int is_input; u32 token; int i = 0; //struct scatterlist *sg; /* * URBs map to sequences of QTDs: one logical transaction */ qtd = ehci_qtd_alloc (ehci, flags); if (!qtd) return NULL; list_add_tail (&qtd->qtd_list, head); qtd->urb = urb; token = QTD_STS_ACTIVE;//使能该qtd token |= (EHCI_TUNE_CERR << 10); /* for split transactions, SplitXState initialized to zero */ len = urb->transfer_buffer_length; is_input = usb_pipein (urb->pipe); if (usb_pipecontrol (urb->pipe)) { /* SETUP pid */ // 在此处将urb对应的数据包地址信息分配到qtd的pointer中,并返回长度 qtd_fill(ehci, qtd, urb->setup_dma, sizeof (struct usb_ctrlrequest), token | (2 /* "setup" */ << 8), 8); /* ... and always at least one more pid */ token ^= QTD_TOGGLE; //用qtd_prev指向填充过的qtd,再申请一个空的qtd qtd_prev = qtd; qtd = ehci_qtd_alloc (ehci, flags); if (!qtd) goto cleanup; qtd->urb = urb; // 将新的qtd联入队列 qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); list_add_tail (&qtd->qtd_list, head); /* for zero length DATA stages, STATUS is always IN */ // 为0说明是仅用于control的命令传输,没有数据 if (len == 0) token |= (1 /* "in" */ << 8); } /* * data transfer stage: buffer setup */ //i = urb->num_mapped_sgs; //if (len > 0 && i > 0) { // sg = urb->sg; // buf = sg_dma_address(sg); // /* urb->transfer_buffer_length may be smaller than the // * size of the scatterlist (or vice versa) // */ // this_sg_len = min_t(int, sg_dma_len(sg), len); //} else { //sg = NULL; buf = urb->transfer_dma; this_sg_len = len; //} if (is_input) token |= (1 /* "in" */ << 8); /* else it's already initted to "out" pid (0 << 8) */ maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input)); /* * buffer gets wrapped in one or more qtds; * last one may be "short" (including zero len) * and may serve as a control status ack */ for (;;) { int this_qtd_len; this_qtd_len = qtd_fill(ehci, qtd, buf, this_sg_len, token, maxpacket); this_sg_len -= this_qtd_len; len -= this_qtd_len; buf += this_qtd_len; /* * short reads advance to a "magic" dummy instead of the next * qtd ... that forces the queue to stop, for manual cleanup. * (this will usually be overridden later.) */ if (is_input) qtd->hw_alt_next = ehci->async->hw->hw_alt_next; /* qh makes control packets use qtd toggle; maybe switch it */ if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0) token ^= QTD_TOGGLE; if (this_sg_len <= 0) { if (--i <= 0 || len <= 0) break; // sg = sg_next(sg); // buf = sg_dma_address(sg); // this_sg_len = min_t(int, sg_dma_len(sg), len); } qtd_prev = qtd; qtd = ehci_qtd_alloc (ehci, flags); if (!qtd) goto cleanup; qtd->urb = urb; qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); list_add_tail (&qtd->qtd_list, head); } /* * unless the caller requires manual cleanup after short reads, * have the alt_next mechanism keep the queue running after the * last data qtd (the only one, for control and most other cases). */ if ((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 || usb_pipecontrol (urb->pipe)) qtd->hw_alt_next = EHCI_LIST_END(ehci); /* * control requests may need a terminating data "status" ack; * other OUT ones may need a terminating short packet * (zero length). */ // 对urb中transfer_buffer_length非零,即涉及数据传输,且传输类型为Control或者是传输方向为OUT,就增加一个qtd作为结束, // 该qtd要传输的数据长度为零。并把最后一个qtd的token中IOC位置1,表示在完成qtd的传输后,在下一个中断周期产生一个中断 if (urb->transfer_buffer_length != 0) { int one_more = 0; if (usb_pipecontrol (urb->pipe)) { one_more = 1; token ^= 0x0100; /* "in" <--> "out" */ token |= QTD_TOGGLE; /* force DATA1 */ //printf("[%s %d] token = 0x%lx\n", __func__, __LINE__, token); } else if (usb_pipeout(urb->pipe) && (urb->transfer_flags & URB_ZERO_PACKET) && !(urb->transfer_buffer_length % maxpacket)) { one_more = 1; } if (one_more) { qtd_prev = qtd; qtd = ehci_qtd_alloc (ehci, flags); if (!qtd) goto cleanup; qtd->urb = urb; qtd_prev->hw_next = QTD_NEXT(ehci, qtd->qtd_dma); list_add_tail (&qtd->qtd_list, head); /* never any data in such packets */ qtd_fill(ehci, qtd, 0, 0, token, 0); } } /* by default, enable interrupt on urb completion */ if (!(urb->transfer_flags & URB_NO_INTERRUPT)) qtd->hw_token |= cpu_to_hc32(ehci, QTD_IOC); return head; cleanup: qtd_list_free (ehci, urb, head); return NULL; } /*-------------------------------------------------------------------------*/ // Would be best to create all qh's from config descriptors, // when each interface/altsetting is established. Unlink // any previous qh and cancel its urbs first; endpoints are // implicitly reset then (data toggle too). // That'd mean updating how usbcore talks to HCDs. (2.7?) /* * Each QH holds a qtd list; a QH is used for everything except iso. * * For interrupt urbs, the scheduler must set the microframe scheduling * mask(s) each time the QH gets scheduled. For highspeed, that's * just one microframe in the s-mask. For split interrupt transactions * there are additional complications: c-mask, maybe FSTNs. */ static struct ehci_qh * qh_make ( struct ehci_hcd *ehci, struct urb *urb, gfp_t flags ) { struct ehci_qh *qh = ehci_qh_alloc (ehci); u32 info1 = 0, info2 = 0; int is_input, type; int maxp = 0; //struct usb_tt *tt = urb->dev->tt; struct ehci_qh_hw *hw; if (!qh) return qh; /* * init endpoint/device data for this QH */ info1 |= usb_pipeendpoint (urb->pipe) << 8; info1 |= usb_pipedevice (urb->pipe) << 0; is_input = usb_pipein (urb->pipe); type = usb_pipetype (urb->pipe); maxp = usb_maxpacket (urb->dev, urb->pipe, !is_input); /* 1024 byte maxpacket is a hardware ceiling. High bandwidth * acts like up to 3KB, but is built from smaller packets. */ if (max_packet(maxp) > 1024) { ehci_dbg("bogus qh maxpacket %d\n", max_packet(maxp)); goto done; } /* Compute interrupt scheduling parameters just once, and save. * - allowing for high bandwidth, how many nsec/uframe are used? * - split transactions need a second CSPLIT uframe; same question * - splits also need a schedule gap (for full/low speed I/O) * - qh has a polling interval * * For control/bulk requests, the HC or TT handles these. */ if (type == PIPE_INTERRUPT) { unsigned tmp; //qh->ps.usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH, // is_input, 0, // hb_mult(maxp) * max_packet(maxp))); qh->ps.phase = NO_FRAME; if (urb->dev->speed == USB_SPEED_HIGH) { qh->ps.c_usecs = 0; qh->gap_uf = 0; if (urb->interval > 1 && urb->interval < 8) { /* NOTE interval 2 or 4 uframes could work. * But interval 1 scheduling is simpler, and * includes high bandwidth. */ urb->interval = 1; } else if (urb->interval > ehci->periodic_size << 3) { urb->interval = ehci->periodic_size << 3; } qh->ps.period = urb->interval >> 3; /* period for bandwidth allocation */ tmp = min(EHCI_BANDWIDTH_SIZE, 1 << (urb->ep->desc.bInterval - 1)); /* Allow urb->interval to override */ qh->ps.bw_uperiod = min(tmp, (unsigned)urb->interval); qh->ps.bw_period = qh->ps.bw_uperiod >> 3; } else { int think_time; /* gap is f(FS/LS transfer times) */ //qh->gap_uf = 1 + usb_calc_bus_time (urb->dev->speed, // is_input, 0, maxp) / (125 * 1000); /* FIXME this just approximates SPLIT/CSPLIT times */ if (is_input) { // SPLIT, gap, CSPLIT+DATA //qh->ps.c_usecs = qh->ps.usecs + HS_USECS(0); //qh->ps.usecs = HS_USECS(1); } else { // SPLIT+DATA, gap, CSPLIT //qh->ps.usecs += HS_USECS(1); //qh->ps.c_usecs = HS_USECS(0); } //think_time = tt ? tt->think_time : 0; //qh->ps.tt_usecs = NS_TO_US(think_time + // usb_calc_bus_time (urb->dev->speed, // is_input, 0, max_packet (maxp))); if (urb->interval > ehci->periodic_size) urb->interval = ehci->periodic_size; qh->ps.period = urb->interval; /* period for bandwidth allocation */ tmp = min(EHCI_BANDWIDTH_FRAMES, (unsigned)(urb->ep->desc.bInterval)); //tmp = rounddown_pow_of_two(tmp); /* Allow urb->interval to override */ qh->ps.bw_period = min((unsigned)tmp, (unsigned)(urb->interval)); qh->ps.bw_uperiod = qh->ps.bw_period << 3; } } /* support for tt scheduling, and access to toggles */ qh->ps.udev = urb->dev; qh->ps.ep = urb->ep; /* using TT? */ switch (urb->dev->speed) { case USB_SPEED_LOW: info1 |= QH_LOW_SPEED; /* FALL THROUGH */ case USB_SPEED_FULL: /* EPS 0 means "full" */ if (type != PIPE_INTERRUPT) info1 |= (EHCI_TUNE_RL_TT << 28); if (type == PIPE_CONTROL) { info1 |= QH_CONTROL_EP; /* for TT */ info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ } info1 |= maxp << 16; info2 |= (EHCI_TUNE_MULT_TT << 30); /* Some Freescale processors have an erratum in which the * port number in the queue head was 0..N-1 instead of 1..N. */ if (ehci_has_fsl_portno_bug(ehci)) info2 |= (urb->dev->ttport-1) << 23; else info2 |= urb->dev->ttport << 23; /* set the address of the TT; for TDI's integrated * root hub tt, leave it zeroed. */ //if (tt && tt->hub != ehci_to_hcd(ehci)->self.root_hub) // info2 |= tt->hub->devnum << 16; /* NOTE: if (PIPE_INTERRUPT) { scheduler sets c-mask } */ break; case USB_SPEED_HIGH: /* no TT involved */ info1 |= QH_HIGH_SPEED; if (type == PIPE_CONTROL) { info1 |= (EHCI_TUNE_RL_HS << 28); info1 |= 64 << 16; /* usb2 fixed maxpacket */ info1 |= QH_TOGGLE_CTL; /* toggle from qtd */ info2 |= (EHCI_TUNE_MULT_HS << 30); } else if (type == PIPE_BULK) { info1 |= (EHCI_TUNE_RL_HS << 28); /* The USB spec says that high speed bulk endpoints * always use 512 byte maxpacket. But some device * vendors decided to ignore that, and MSFT is happy * to help them do so. So now people expect to use * such nonconformant devices with Linux too; sigh. */ info1 |= max_packet(maxp) << 16; info2 |= (EHCI_TUNE_MULT_HS << 30); } else { /* PIPE_INTERRUPT */ info1 |= max_packet (maxp) << 16; info2 |= hb_mult (maxp) << 30; } break; default: ehci_dbg("bogus dev %p speed %d\n", urb->dev, urb->dev->speed); done: qh_destroy(ehci, qh); return NULL; } /* NOTE: if (PIPE_INTERRUPT) { scheduler sets s-mask } */ /* init as live, toggle clear */ qh->qh_state = QH_STATE_IDLE; hw = qh->hw; hw->hw_info1 = cpu_to_hc32(ehci, info1); hw->hw_info2 = cpu_to_hc32(ehci, info2); qh->is_out = !is_input; usb_settoggle (urb->dev, usb_pipeendpoint (urb->pipe), !is_input, 1); return qh; } /*-------------------------------------------------------------------------*/ static void enable_async(struct ehci_hcd *ehci) { int cmd; int ret; if (ehci->async_count++) return; ///* Stop waiting to turn off the async schedule */ ehci->enabled_hrtimer_events &= ~BIT(EHCI_HRTIMER_DISABLE_ASYNC); ///* Don't start the schedule until ASS is 0 */ hal_dcache_clean_all(); //akira 20202020 hal_dcache_invalidate_all(); //akira 20202020 ehci_poll_ASS(ehci); turn_on_io_watchdog(ehci); /*scan??*/ //akira??? // /* need to flush Dcache? */ // hal_dcache_clean_all(); // /* Enable async. schedule. */ // cmd = ehci_readl(ehci, &ehci->regs->command); // cmd |= CMD_ASE; // ehci_writel(ehci, cmd, &ehci->regs->command); // ret = ehci_handshake(ehci, (uint32_t *)&ehci->regs->status, STS_ASS, STS_ASS, // 100*1000); // if (ret < 0) { // hal_log_err("EHCI fail timeout STS_ASS set.\n"); // return; // } // if (ehci->isoc_count > 0 || (ehci->async_count + ehci->intr_count > 0)) // ehci_work(ehci); } static void disable_async(struct ehci_hcd *ehci) { int cmd; int ret; if (--ehci->async_count) return; /* The async schedule and unlink lists are supposed to be empty */ //WARN_ON(ehci->async->qh_next.qh || !list_empty(&ehci->async_unlink) || // !list_empty(&ehci->async_idle)); ///* Don't turn off the schedule until ASS is 1 */ hal_dcache_clean_all(); //akira 20202020 hal_dcache_invalidate_all(); //akira 20202020 ehci_poll_ASS(ehci); // cmd = ehci_readl(ehci, &ehci->regs->command); // cmd &= ~CMD_ASE; // ehci_writel(ehci, cmd, &ehci->regs->command); // ret = ehci_handshake(ehci, (uint32_t *)&ehci->regs->status, STS_ASS, 0, // 100*1000); // if (ret < 0) { // hal_log_err("EHCI fail timeout STS_ASS reset.\n"); // return; // } } /* move qh (and its qtds) onto async queue; maybe enable queue. */ static void qh_link_async (struct ehci_hcd *ehci, struct ehci_qh *qh) { uint32_t dma = QH_NEXT(ehci, qh->qh_dma); struct ehci_qh *head; /* Don't link a QH if there's a Clear-TT-Buffer pending */ //if (unlikely(qh->clearing_tt)) // return; //WARN_ON(qh->qh_state != QH_STATE_IDLE); /* clear halt and/or toggle; and maybe recover from silicon quirk */ qh_refresh(ehci, qh); /* splice right after start */ head = ehci->async; qh->qh_next = head->qh_next; qh->hw->hw_next = head->hw->hw_next; head->qh_next.qh = qh; head->hw->hw_next = dma; qh->qh_state = QH_STATE_LINKED; qh->xacterrs = 0; qh->unlink_reason = 0; /* qtd completions reported later by interrupt */ enable_async(ehci); } /*-------------------------------------------------------------------------*/ /* * For control/bulk/interrupt, return QH with these TDs appended. * Allocates and initializes the QH if necessary. * Returns null if it can't allocate a QH it needs to. * If the QH has TDs (urbs) already, that's great. */ static struct ehci_qh *qh_append_tds ( struct ehci_hcd *ehci, struct urb *urb, struct list_head *qtd_list, int epnum, void **ptr ) { struct ehci_qh *qh = NULL; uint32_t qh_addr_mask = cpu_to_hc32(ehci, 0x7f); qh = (struct ehci_qh *) *ptr; if (unlikely (qh == NULL)) { /* can't sleep here, we have ehci->lock... */ qh = qh_make (ehci, urb, 0); *ptr = qh; } if (qh != NULL) { struct ehci_qtd *qtd; if (unlikely (list_empty (qtd_list))) qtd = NULL; else qtd = list_entry (qtd_list->next, struct ehci_qtd, qtd_list); /* control qh may need patching ... */ if (epnum == 0) { /* usb_reset_device() briefly reverts to address 0 */ if (usb_pipedevice (urb->pipe) == 0) qh->hw->hw_info1 &= ~qh_addr_mask; } /* just one way to queue requests: swap with the dummy qtd. * only hc or qh_refresh() ever modify the overlay. */ if (qtd != NULL) { struct ehci_qtd *dummy; dma_addr_t dma; uint32_t token; /* to avoid racing the HC, use the dummy td instead of * the first td of our list (becomes new dummy). both * tds stay deactivated until we're done, when the * HC is allowed to fetch the old dummy (4.10.2). */ token = qtd->hw_token; qtd->hw_token = HALT_BIT(ehci); dummy = qh->dummy; dma = dummy->qtd_dma; *dummy = *qtd; dummy->qtd_dma = dma; list_del (&qtd->qtd_list); list_add (&dummy->qtd_list, qtd_list); list_splice_tail(qtd_list, &qh->qtd_list); ehci_qtd_init(ehci, qtd, qtd->qtd_dma); qh->dummy = qtd; /* hc must see the new dummy at list end */ dma = qtd->qtd_dma; qtd = list_entry (qh->qtd_list.prev, struct ehci_qtd, qtd_list); qtd->hw_next = QTD_NEXT(ehci, dma); /* let the hc process these next qtds */ dummy->hw_token = token; urb->hcpriv = qh; } } return qh; } /*-------------------------------------------------------------------------*/ static int submit_async ( struct ehci_hcd *ehci, struct urb *urb, struct list_head *qtd_list, gfp_t mem_flags ) { int epnum; unsigned long flags; struct ehci_qh *qh = NULL; int rc = 0; epnum = urb->ep->desc.bEndpointAddress; flags = hal_spin_lock_irqsave(&ehci->lock); //if (unlikely(!HCD_HW_ACCESSIBLE(ehci_to_hcd(ehci)))) { // rc = -ESHUTDOWN; // goto done; //} // rc = usb_hcd_link_urb_to_ep(ehci_to_hcd(ehci), urb); // if (rc) // goto done; qh = qh_append_tds(ehci, urb, qtd_list, epnum, &urb->ep->hcpriv); if (qh == NULL) { usb_hcd_unlink_urb_from_ep(ehci_to_hcd(ehci), urb); rc = -ENOMEM; goto done; } /* Control/bulk operations through TTs don't need scheduling, * the HC and TT handle it when the TT has a buffer ready. */ if (qh->qh_state == QH_STATE_IDLE) { qh_link_async(ehci, qh); } done: hal_spin_unlock_irqrestore(&ehci->lock, flags); // qtd_list_free (ehci, urb, &(ehci->wait_free_list)); if (qh == NULL) qtd_list_free (ehci, urb, qtd_list); return rc; } static void single_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) { struct ehci_qh *prev; /* Add to the end of the list of QHs waiting for the next IAAD */ qh->qh_state = QH_STATE_UNLINK_WAIT; list_add_tail(&qh->unlink_node, &ehci->async_unlink); /* Unlink it from the schedule */ prev = ehci->async; while (prev->qh_next.qh != qh) prev = prev->qh_next.qh; prev->hw->hw_next = qh->hw->hw_next; prev->qh_next = qh->qh_next; if (ehci->qh_scan_next == qh) ehci->qh_scan_next = qh->qh_next.qh; } static void start_iaa_cycle(struct ehci_hcd *ehci) { /* If the controller isn't running, we don't have to wait for it */ if (unlikely(ehci->rh_state < EHCI_RH_RUNNING)) { end_unlink_async(ehci); /* Otherwise start a new IAA cycle if one isn't already running */ } else if (ehci->rh_state == EHCI_RH_RUNNING && !ehci->iaa_in_progress) { /* Make sure the unlinks are all visible to the hardware */ //wmb(); ehci_writel(ehci, ehci->command | CMD_IAAD, &ehci->regs->command); ehci_readl(ehci, &ehci->regs->command); ehci->iaa_in_progress = true; // ehci_enable_event(ehci, EHCI_HRTIMER_IAA_WATCHDOG, true); ehci_iaa_watchdog(ehci); } } static void end_iaa_cycle(struct ehci_hcd *ehci) { if (ehci->has_synopsys_hc_bug) ehci_writel(ehci, (u32) ehci->async->qh_dma, &ehci->regs->async_next); /* The current IAA cycle has ended */ ehci->iaa_in_progress = false; end_unlink_async(ehci); } /* See if the async qh for the qtds being unlinked are now gone from the HC */ static void end_unlink_async(struct ehci_hcd *ehci) { struct ehci_qh *qh; bool early_exit; if (list_empty(&ehci->async_unlink)) return; qh = list_first_entry(&ehci->async_unlink, struct ehci_qh, unlink_node); /* QH whose IAA cycle just ended */ /* * If async_unlinking is set then this routine is already running, * either on the stack or on another CPU. */ early_exit = ehci->async_unlinking; /* If the controller isn't running, process all the waiting QHs */ if (ehci->rh_state < EHCI_RH_RUNNING) list_splice_tail_init(&ehci->async_unlink, &ehci->async_idle); /* * Intel (?) bug: The HC can write back the overlay region even * after the IAA interrupt occurs. In self-defense, always go * through two IAA cycles for each QH. */ else if (qh->qh_state == QH_STATE_UNLINK) { /* * Second IAA cycle has finished. Process only the first * waiting QH (NVIDIA (?) bug). */ list_move_tail(&qh->unlink_node, &ehci->async_idle); } /* * AMD/ATI (?) bug: The HC can continue to use an active QH long * after the IAA interrupt occurs. To prevent problems, QHs that * may still be active will wait until 2 ms have passed with no * change to the hw_current and hw_token fields (this delay occurs * between the two IAA cycles). * * The EHCI spec (4.8.2) says that active QHs must not be removed * from the async schedule and recommends waiting until the QH * goes inactive. This is ridiculous because the QH will _never_ * become inactive if the endpoint NAKs indefinitely. */ /* Some reasons for unlinking guarantee the QH can't be active */ else if (qh->unlink_reason & (QH_UNLINK_HALTED | QH_UNLINK_SHORT_READ | QH_UNLINK_DUMMY_OVERLAY)) goto DelayDone; /* The QH can't be active if the queue was and still is empty... */ else if ((qh->unlink_reason & QH_UNLINK_QUEUE_EMPTY) && list_empty(&qh->qtd_list)) goto DelayDone; /* ... or if the QH has halted */ else if (qh->hw->hw_token & cpu_to_hc32(ehci, QTD_STS_HALT)) goto DelayDone; /* Otherwise we have to wait until the QH stops changing */ else { uint32_t qh_current, qh_token; qh_current = qh->hw->hw_current; qh_token = qh->hw->hw_token; if (qh_current != ehci->old_current || qh_token != ehci->old_token) { ehci->old_current = qh_current; ehci->old_token = qh_token; ehci_enable_event(ehci, EHCI_HRTIMER_ACTIVE_UNLINK, true); return; } DelayDone: qh->qh_state = QH_STATE_UNLINK; early_exit = true; } ehci->old_current = ~0; /* Prepare for next QH */ /* Start a new IAA cycle if any QHs are waiting for it */ if (!list_empty(&ehci->async_unlink)) start_iaa_cycle(ehci); /* * Don't allow nesting or concurrent calls, * or wait for the second IAA cycle for the next QH. */ if (early_exit) return; /* Process the idle QHs */ ehci->async_unlinking = true; while (!list_empty(&ehci->async_idle)) { qh = list_first_entry(&ehci->async_idle, struct ehci_qh, unlink_node); list_del(&qh->unlink_node); qh->qh_state = QH_STATE_IDLE; qh->qh_next.qh = NULL; if (!list_empty(&qh->qtd_list)) qh_completions(ehci, qh); if (!list_empty(&qh->qtd_list) && ehci->rh_state == EHCI_RH_RUNNING) qh_link_async(ehci, qh); disable_async(ehci); } ehci->async_unlinking = false; } static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh); static void unlink_empty_async(struct ehci_hcd *ehci) { struct ehci_qh *qh; struct ehci_qh *qh_to_unlink = NULL; int count = 0; /* Find the last async QH which has been empty for a timer cycle */ for (qh = ehci->async->qh_next.qh; qh; qh = qh->qh_next.qh) { if (list_empty(&qh->qtd_list) && qh->qh_state == QH_STATE_LINKED) { ++count; if (qh->unlink_cycle != ehci->async_unlink_cycle) qh_to_unlink = qh; } } /* If nothing else is being unlinked, unlink the last empty QH */ if (list_empty(&ehci->async_unlink) && qh_to_unlink) { qh_to_unlink->unlink_reason |= QH_UNLINK_QUEUE_EMPTY; start_unlink_async(ehci, qh_to_unlink); --count; } /* Other QHs will be handled later */ if (count > 0) { // ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); ++ehci->async_unlink_cycle; unlink_empty_async(ehci); } } #ifdef CONFIG_PM /* The root hub is suspended; unlink all the async QHs */ static void unlink_empty_async_suspended(struct ehci_hcd *ehci) { struct ehci_qh *qh; while (ehci->async->qh_next.qh) { qh = ehci->async->qh_next.qh; WARN_ON(!list_empty(&qh->qtd_list)); single_unlink_async(ehci, qh); } } #endif /* makes sure the async qh will become idle */ /* caller must own ehci->lock */ static void start_unlink_async(struct ehci_hcd *ehci, struct ehci_qh *qh) { /* If the QH isn't linked then there's nothing we can do. */ if (qh->qh_state != QH_STATE_LINKED) return; single_unlink_async(ehci, qh); start_iaa_cycle(ehci); } /*-------------------------------------------------------------------------*/ // scan_async()函数的工作就是去check传输的状况,并回收qtd static void scan_async (struct ehci_hcd *ehci) { struct ehci_qh *qh; bool check_unlinks_later = false; ehci->qh_scan_next = ehci->async->qh_next.qh; while (ehci->qh_scan_next) { qh = ehci->qh_scan_next; ehci->qh_scan_next = qh->qh_next.qh; /* clean any finished work for this qh */ if (!list_empty(&qh->qtd_list)) { int temp; /* * Unlinks could happen here; completion reporting * drops the lock. That's why ehci->qh_scan_next * always holds the next qh to scan; if the next qh * gets unlinked then ehci->qh_scan_next is adjusted * in single_unlink_async(). */ temp = qh_completions(ehci, qh); if (temp) { start_unlink_async(ehci, qh); } else if (list_empty(&qh->qtd_list) && qh->qh_state == QH_STATE_LINKED) { qh->unlink_cycle = ehci->async_unlink_cycle; check_unlinks_later = true; } } } /* * Unlink empty entries, reducing DMA usage as well * as HCD schedule-scanning costs. Delay for any qh * we just scanned, there's a not-unusual case that it * doesn't stay idle for long. */ // if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING && // !(ehci->enabled_hrtimer_events & // BIT(EHCI_HRTIMER_ASYNC_UNLINKS))) { // ehci_enable_event(ehci, EHCI_HRTIMER_ASYNC_UNLINKS, true); // ++ehci->async_unlink_cycle; // } if (check_unlinks_later && ehci->rh_state == EHCI_RH_RUNNING) { ++ehci->async_unlink_cycle;//akira 20202020 unlink_empty_async(ehci); } }