/***************************************************************************//** * @file drv_sdcard.c * @brief Memory card driver (SPI mode) of RT-Thread RTOS for using EFM32 * USART module * COPYRIGHT (C) 2011, RT-Thread Development Team * @author onelife * @version 0.4 beta ******************************************************************************* * @section License * The license and distribution terms for this file may be found in the file * LICENSE in this distribution or at http://www.rt-thread.org/license/LICENSE ******************************************************************************* * @section Change Logs * Date Author Notes * 2011-05-13 onelife Initial creation for using EFM32 USART module * 2011-07-07 onelife Modify initialization function to return error code * 2011-12-08 onelife Add giant gecko development kit support * 2011-12-15 onelife Move MicroSD enabling routine to driver * initialization function (board.c) * 2011-12-21 onelife Modify code due to SPI write format changed ******************************************************************************/ /***************************************************************************//** * @addtogroup efm32_dk * @{ ******************************************************************************/ /* Includes ------------------------------------------------------------------*/ #include "board.h" #include "drv_usart.h" #include "drv_sdcard.h" #if defined(EFM32_USING_SPISD) #include /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ #ifdef EFM32_SDCARD_DEBUG #define sdcard_debug(format,args...) rt_kprintf(format, ##args) #else #define sdcard_debug(format,args...) #endif /* Private constants ---------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ static struct rt_device sd_device; static struct dfs_partition sdPart; static rt_device_t spi = RT_NULL; static rt_uint16_t sdType; static rt_bool_t sdAutoCs = true; static rt_timer_t sdTimer = RT_NULL; static volatile rt_bool_t sdInTime = true; /* Private function prototypes -----------------------------------------------*/ /* Private functions ---------------------------------------------------------*/ /***************************************************************************//** * @brief * Memory device timeout interrupt handler * * @details * * @note * * @param[in] parameter * Parameter ******************************************************************************/ static void efm_spiSd_timer(void* parameter) { sdInTime = false; } /***************************************************************************//** * @brief * Set/Clear chip select * * @details * * @note * * @param[in] enable * Chip select pin setting ******************************************************************************/ static void efm_spiSd_cs(rt_uint8_t enable) { if (!sdAutoCs) { if (enable) { GPIO_PinOutClear(SD_CS_PORT, SD_CS_PIN); } else { GPIO_PinOutSet(SD_CS_PORT, SD_CS_PIN); } } } /***************************************************************************//** * @brief * Set operation speed level * * @details * * @note * * @param[in] level * Set SD speed level ******************************************************************************/ static void efm_spiSd_speed(rt_uint8_t level) { RT_ASSERT(spi != RT_NULL); struct efm32_usart_device_t *usart; rt_uint32_t baudrate; usart = (struct efm32_usart_device_t *)(spi->user_data); if (level == SD_SPEED_HIGH) { baudrate = EFM32_SDCLK_HIGH; } else { baudrate = EFM32_SDCLK_LOW; } USART_BaudrateSyncSet(usart->usart_device, 0, baudrate); } /***************************************************************************//** * @brief * Read raw data from memory device * * @details * * @note * * @param[in] buffer * Poniter to the buffer * * @param[in] size * Buffer size in byte * * @return * Number of read bytes ******************************************************************************/ static rt_size_t efm_spiSd_read(void *buffer, rt_size_t size) { RT_ASSERT(spi != RT_NULL); rt_uint8_t buf_read[5], ret; /* Build instruction buffer */ buf_read[0] = 0x00; *(rt_uint8_t **)(&buf_read[1]) = buffer; /* Read data */ efm_spiSd_cs(1); if ((ret = spi->read(spi, EFM32_NO_DATA, buf_read, size)) == 0) { sdcard_debug("SPISD: Read failed!\n"); } efm_spiSd_cs(0); return ret; } /***************************************************************************//** * @brief * Send command to memory device * * @details * * @note * * @param[in] cmd * Command index * * @param[in] arg * Argument * * @param[in] trail * Pointer to the buffer to store trailing data * * @return * Command response ******************************************************************************/ static rt_uint16_t efm_spiSd_cmd( rt_uint8_t cmd, rt_uint32_t arg, rt_uint8_t *trail) { RT_ASSERT(spi != RT_NULL); rt_uint8_t buf_ins[11]; rt_uint8_t buf_res[32]; /* Expect (x+1+4) bytes for CRC, (x+1+19) for CSD/CID */ rt_uint8_t len_trl, i, j; rt_uint16_t ret; rt_bool_t skip; ret = 0xffff; rt_memset(buf_res, 0xff, sizeof(buf_res)); sdcard_debug("SPISD: Send command %d(%x)\n", cmd, arg); do { /* Build instruction buffer */ buf_ins[0] = 6; /* Instruction length */ buf_ins[1] = 0x40 | cmd; /* Command index */ buf_ins[2] = (arg >> 24) & 0x000000ff; /* Argument: MSB first */ buf_ins[3] = (arg >> 16) & 0x000000ff; buf_ins[4] = (arg >> 8) & 0x000000ff; buf_ins[5] = arg & 0x000000ff; if (cmd == CMD0) { buf_ins[6] = 0x95; /* Valid CRC for CMD0(0) */ } else if (cmd == CMD8) { buf_ins[6] = 0x87; /* Valid CRC for CMD8(0x1AA) */ } else if (cmd == CMD58) { buf_ins[6] = 0x01; /* Dummy CRC + Stop */ } else { buf_ins[6] = 0x01; /* Dummy CRC + Stop */ } *(rt_uint8_t **)(&buf_ins[7]) = buf_res; /* Pointer to RX buffer */ /* Set trail length */ if (cmd == CMD8) { len_trl = 4; /* R7 response */ } else if (cmd == CMD9) { len_trl = SD_BLOCK_SIZE_CSD; } else if (cmd == CMD10) { len_trl = SD_BLOCK_SIZE_CID; } else if (cmd == CMD58) { len_trl = SD_BLOCK_SIZE_OCR; /* R3 response */ } else { len_trl = 0; } /* Send command and get response */ efm_spiSd_cs(1); if (spi->read(spi, EFM32_NO_DATA, buf_ins, sizeof(buf_res)) == 0) { sdcard_debug("SPISD: Send command failed!\n"); break; } efm_spiSd_cs(0); /* Skip a stuff byte when stop reading */ if (cmd == CMD12) { skip = true; } else { skip = false; } /* Find valid response: The response is sent back within command response time (NCR), 0 to 8 bytes for SDC, 1 to 8 bytes for MMC */ for (i = 0; i < sizeof(buf_res); i++) { if (buf_res[i] != 0xff) { if (skip) { skip = false; sdcard_debug("SPISD: Skip %x (at %d)\n", buf_res[i], i); continue; } if (cmd == ACMD13 & 0x7f) { ret = (rt_uint16_t)buf_res[i]; /* R2 response */ } else { ret = (rt_uint8_t)buf_res[i]; } break; } } sdcard_debug("SPISD: Response %x (at %d)\n", ret, i); i++; /* Copy the trailing data */ if ((ret != 0xffff) && len_trl && trail) { if (cmd == CMD9 || cmd == CMD10) { /* Wait for data block */ for (; i < sizeof(buf_res); i++) { if (buf_res[i] == 0xfe) { break; } } /* Check if valid */ if (i >= sizeof(buf_res)) { sdcard_debug("SPISD: Token is not found!\n"); ret = 0xffff; break; } i++; } /* Copy the data */ for (j = 0; j < len_trl; j++) { trail[j] = buf_res[i + j]; } } } while(0); return ret; } /***************************************************************************//** * @brief * Read a block of data from memory device. This function is used to handle * the responses of specified commands (e.g. ACMD13, CMD17 and CMD18) * * @details * * @note * * @param[in] buffer * Poniter to the buffer * * @param[in] size * Buffer size in byte * * @return * Error code ******************************************************************************/ static rt_err_t efm_spiSd_readBlock(void *buffer, rt_size_t size) { RT_ASSERT(spi != RT_NULL); rt_uint8_t buf_ins[5]; rt_uint8_t buf_res[8]; /* Expect 2 bytes for CRC */ rt_uint8_t i, len_copy; rt_bool_t start; start = false; do { /* Build instruction buffer */ buf_ins[0] = 0; /* Instruction length */ *(rt_uint8_t **)(&buf_ins[1]) = buf_res; /* Pointer to RX buffer */ while(1) { /* Send read command */ efm_spiSd_cs(1); if (spi->read(spi, EFM32_NO_DATA, buf_ins, \ sizeof(buf_res)) == 0) { sdcard_debug("SPISD: Get read command response failed!\n"); break; } efm_spiSd_cs(0); /* Wait for data */ for (i = 0; i < sizeof(buf_res); i++) { if (buf_res[i] != 0xff) { start = true; break; } } if (start) { break; } }; /* Ckeck if valid */ if (!start || (buf_res[i] != 0xfe)) { sdcard_debug("SPISD: Token is invalid! (%x)\n", buf_res[i]); break; } /* Copy data to buffer and read the rest */ len_copy = sizeof(buf_res) - i - 1; rt_memcpy(buffer, &buf_res[i + 1], len_copy); sdcard_debug("SPISD: Read block start at %d, copy %d bytes\n", i, \ len_copy); /* Build instruction buffer */ buf_ins[0] = 0; /* Instruction length */ *(rt_uint8_t **)(&buf_ins[1]) = (rt_uint8_t *)buffer + len_copy; /* Pointer to RX buffer */ /* Send read command */ efm_spiSd_cs(1); if (spi->read(spi, EFM32_NO_DATA, buf_ins, size - len_copy) == 0) { sdcard_debug("SPISD: Read data block failed!\n"); break; } *(rt_uint8_t **)(&buf_ins[1]) = buf_res; /* Pointer to RX buffer */ if (spi->read(spi, EFM32_NO_DATA, buf_ins, sizeof(buf_res)) == 0) { sdcard_debug("SPISD: Read CRC failed!\n"); break; } sdcard_debug("SPISD: Read CRC %x %x\n", buf_res[0], buf_res[1]); efm_spiSd_cs(0); return RT_EOK; } while(0); sdcard_debug("SPISD: Read block failed!\n"); return -RT_ERROR; } /***************************************************************************//** * @brief * Write a block of data to memory device. This function is used to send data * and control tokens for block write commands (e.g. CMD24 and CMD25) * * @details * * @note * * @param[in] buffer * Poniter to the buffer * * @param[in] token * Control token * * @return * Error code ******************************************************************************/ static rt_err_t efm_spiSd_writeBlock(void *buffer, rt_uint8_t token) { RT_ASSERT(spi != RT_NULL); rt_err_t ret; rt_uint8_t buf_ins[11]; rt_uint8_t buf_res[8]; /* Expect a byte for data response */ rt_uint8_t i; ret = RT_ERROR; sdcard_debug("SPISD: Write block\n"); do { /* Initialize timer */ sdInTime = true; rt_timer_start(sdTimer); /* Wait for card ready */ do { efm_spiSd_read(buf_res, sizeof(buf_res)); } while (sdInTime && (buf_res[sizeof(buf_res) - 1] != 0xff)); if (buf_res[sizeof(buf_res) - 1] != 0xff) { sdcard_debug("SPISD: Card is busy before writing! (%x)\n", \ buf_res[sizeof(buf_res) - 1]); ret = -RT_EBUSY; break; } rt_timer_stop(sdTimer); /* Send data */ sdcard_debug("SPISD: Send data, token %x\n", token); if (token != 0xfd) { /* Send token and data */ buf_ins[0] = 1; /* Instruction length */ buf_ins[1] = token; *(rt_uint8_t **)(&buf_ins[2]) = (rt_uint8_t *)buffer; /* Pointer to TX buffer */ efm_spiSd_cs(1); if (spi->write(spi, EFM32_NO_DATA, buf_ins, SD_SECTOR_SIZE) == 0) { sdcard_debug("SPISD: Write data failed!\n"); break; } /* Build instruction buffer */ buf_ins[0] = 2; /* Instruction length */ buf_ins[1] = 0xff; /* CRC (Dummy) */ buf_ins[2] = 0xff; *(rt_uint8_t **)(&buf_ins[3]) = buf_res; /* Pointer to RX buffer */ /* Send CRC and read a byte */ if (spi->read(spi, EFM32_NO_DATA, buf_ins, sizeof(buf_res)) == 0) { sdcard_debug("SPISD: Write CRC failed!\n"); break; } efm_spiSd_cs(0); /* Check if accepted */ for (i = 0; i < sizeof(buf_res); i++) { if (buf_res[i] != 0xff) { buf_res[i] &= 0x1f; break; } } if (buf_res[i] != 0x05) { sdcard_debug("SPISD: Writing is not accepted! (%x at %d)\n", \ buf_res[i], i); break; } } else { /* Send token */ buf_ins[0] = 1; /* Instruction length */ buf_ins[1] = token; *(rt_uint8_t **)(&buf_ins[2]) = RT_NULL; /* Pointer to TX buffer */ efm_spiSd_cs(1); if (spi->write(spi, EFM32_NO_DATA, buf_ins, 0) != 0) { sdcard_debug("SPISD: Write token failed!\n"); break; } /* Initialize timer */ sdInTime = true; rt_timer_start(sdTimer); /* Wait for card ready */ do { efm_spiSd_read(buf_res, sizeof(buf_res)); } while (sdInTime && (buf_res[sizeof(buf_res) - 1] != 0xff)); if (buf_res[sizeof(buf_res) - 1] != 0xff) { sdcard_debug("SPISD: Card is busy after writing! (%x)\n", \ buf_res[sizeof(buf_res) - 1] ); ret = -RT_EBUSY; break; } rt_timer_stop(sdTimer); } return RT_EOK; } while(0); sdcard_debug("SPISD: Write block failed!\n"); return ret; } /***************************************************************************//** * @brief * Wrapper function of send command to memory device * * @details * * @note * * @param[in] cmd * Command index * * @param[in] arg * Argument * * @param[in] trail * Pointer to the buffer to store trailing data * * @return * Command response ******************************************************************************/ rt_uint16_t efm_spiSd_sendCmd( rt_uint8_t cmd, rt_uint32_t arg, rt_uint8_t *trail) { rt_uint16_t ret; /* ACMD is the command sequense of CMD55-CMD */ if (cmd & 0x80) { cmd &= 0x7f; ret = efm_spiSd_cmd(CMD55, 0x00000000, EFM32_NO_POINTER); if (ret > 0x01) { return ret; } } return efm_spiSd_cmd(cmd, arg, trail); } /***************************************************************************//** * @brief * Initialize memory card device * * @details * * @note * * @param[in] dev * Pointer to device descriptor * * @return * Error code ******************************************************************************/ static rt_err_t rt_spiSd_init(rt_device_t dev) { RT_ASSERT(spi != RT_NULL); rt_uint8_t type, cmd, tril[4]; rt_uint8_t *buf_res; type = 0; buf_res = RT_NULL; do { /* Create and setup timer */ if ((sdTimer = rt_timer_create( "sd_tmr", efm_spiSd_timer, RT_NULL, SD_WAIT_PERIOD, RT_TIMER_FLAG_ONE_SHOT)) == RT_NULL) { sdcard_debug("SPISD: Create timer failed!\n"); break; } /* Open SPI device */ if (spi->open(spi, RT_DEVICE_OFLAG_RDWR) != RT_EOK) { break; } /* Switch to low speed */ efm_spiSd_speed(SD_SPEED_LOW); /* 80 dummy clocks */ efm_spiSd_read(RT_NULL, 80); /* Enter Idle state */ if (efm_spiSd_sendCmd(CMD0, 0x00000000, EFM32_NO_POINTER) != 0x01) { break; } /* Check if SDv2 */ if (efm_spiSd_sendCmd(CMD8, 0x000001AA, tril) == 0x01) { /* SDv2, Vdd: 2.7-3.6V */ if (tril[2] == 0x01 && tril[3] == 0xAA) { /* Initialize timer */ sdInTime = true; rt_timer_start(sdTimer); /* Wait for leaving idle state (ACMD41 with HCS bit) */ while (efm_spiSd_sendCmd(ACMD41, 0x40000000, EFM32_NO_POINTER) \ && sdInTime); /* Check CCS bit (bit 30) in the OCR */ if (sdInTime && efm_spiSd_sendCmd(CMD58, 0x00000000, tril) \ == 0x00) { type = (tril[0] & 0x40) ? CT_SD2 | CT_BLOCK : CT_SD2; } } } else { if (efm_spiSd_sendCmd(ACMD41, 0x00000000, EFM32_NO_POINTER) <= 0x01) { /* SDv1 */ type = CT_SD1; cmd = ACMD41; } else { /* MMCv3 */ type = CT_MMC; cmd = CMD1; } /* Initialize timer */ sdInTime = true; rt_timer_start(sdTimer); /* Wait for leaving idle state */ while (efm_spiSd_sendCmd(cmd, 0x00000000, EFM32_NO_POINTER) && \ sdInTime); /* Set read/write block length to SD_BLOCK_SIZE */ if (!sdInTime || \ (efm_spiSd_sendCmd(CMD16, SD_SECTOR_SIZE, EFM32_NO_POINTER) \ != 0x00)) { type = 0; break; } } rt_timer_stop(sdTimer); /* Check type */ sdType = type; if (sdType) { /* Initialization succeded */ efm_spiSd_speed(SD_SPEED_HIGH); } else { break; } /* Allocate buffer */ if ((buf_res = rt_malloc(SD_SECTOR_SIZE)) == RT_NULL) { sdcard_debug("SPISD: No memory for sector buffer\n"); break; } /* Read the first sector for partition table */ if (dev->read(dev, 0, buf_res, 1) != 1) { sdcard_debug("SPISD: Read first sector failed!\n"); break; } /* Fetch the partition table */ if (dfs_filesystem_get_partition(&sdPart, buf_res, 0) != RT_EOK) { sdPart.offset = 0; sdPart.size = 0; sdcard_debug("SPISD: No partition table\n"); } /* Release buffer */ rt_free(buf_res); sdcard_debug("SPISD: Init OK, card type %x\n", sdType); return RT_EOK; } while (0); /* Release buffer */ if (buf_res) { rt_free(buf_res); } efm_spiSd_deinit(); rt_kprintf("SPISD: Init failed!\n"); return -RT_ERROR; } /***************************************************************************//** * @brief * Open memory card device * * @details * * @note * * @param[in] dev * Pointer to device descriptor * * @param[in] oflag * Device open flag * * @return * Error code ******************************************************************************/ static rt_err_t rt_spiSd_open(rt_device_t dev, rt_uint16_t oflag) { sdcard_debug("SPISD: Open, flag %x\n", sd_device.flag); return RT_EOK; } /***************************************************************************//** * @brief * Close memory card device * * @details * * @note * * @param[in] dev * Pointer to device descriptor * * @return * Error code ******************************************************************************/ static rt_err_t rt_spiSd_close(rt_device_t dev) { sdcard_debug("SPISD: Close, flag %x\n", sd_device.flag); return RT_EOK; } /***************************************************************************//** * @brief * Read from memory card device * * @details * * @note * * @param[in] dev * Pointer to device descriptor * * @param[in] sector * Start sector number (LBA) * * @param[in] buffer * Pointer to the buffer * * @param[in] count * Sector count (1..255) * * @return * Number of read sectors ******************************************************************************/ static rt_size_t rt_spiSd_read( rt_device_t dev, rt_off_t sector, void *buffer, rt_size_t count) { rt_uint8_t buf_ins[11], buf_res[12]; rt_uint8_t *ptr; rt_uint8_t cmd, i; rt_size_t cnt; ptr = (rt_uint8_t *)buffer; cnt = count; sdcard_debug("SPISD: ****** Read Data ******\n"); if (!(sdType & CT_BLOCK)) { /* Convert to byte address if needed */ sector *= SD_SECTOR_SIZE; } do { if (cnt == 1) { /* Single block read */ cmd = CMD17; sdcard_debug("SPISD: Read single block\n"); } else { /* Multiple block read */ cmd = CMD18; sdcard_debug("SPISD: Read multiple blocks\n"); } if (efm_spiSd_sendCmd(cmd, sector, EFM32_NO_POINTER)) { sdcard_debug("SPISD: Read command error!\n"); break; } /* Read data */ do { if (efm_spiSd_readBlock(ptr, SD_SECTOR_SIZE)) { break; } ptr += SD_SECTOR_SIZE; } while(--cnt); /* Stop transmission */ if (cmd == CMD18) { if (efm_spiSd_sendCmd(CMD12, 0x00000000, EFM32_NO_POINTER)) { break; } } return (count); } while(0); return (0); } /***************************************************************************//** * @brief * Write to memory card device * * @details * * @note * * @param[in] dev * Pointer to device descriptor * * @param[in] sector * Start sector number (LBA) * * @param[in] buffer * Pointer to the buffer * * @param[in] count * Sector count (1..255) * * @return * Number of written sectors ******************************************************************************/ static rt_size_t rt_spiSd_write ( rt_device_t dev, rt_off_t sector, const void *buffer, rt_size_t count) { rt_uint8_t buf_ins[11], buf_res[12]; rt_uint8_t *ptr; rt_uint8_t cmd, token, i; rt_size_t cnt; ptr = (rt_uint8_t *)buffer; cnt = count; sdcard_debug("SPISD: ****** Write Data ******\n"); if (!(sdType & CT_BLOCK)) { /* Convert to byte address if needed */ sector *= SD_SECTOR_SIZE; } do { if (cnt == 1) { /* Single block write */ cmd = CMD24; token = 0xfe; sdcard_debug("SPISD: Write single block\n"); } else { /* Multiple block write */ cmd = CMD25; token = 0xfc; sdcard_debug("SPISD: Write multiple blocks\n"); if (sdType & CT_SDC) { if (efm_spiSd_sendCmd(ACMD23, count, EFM32_NO_POINTER)) { break; } } } if (efm_spiSd_sendCmd(cmd, sector, EFM32_NO_POINTER)) { sdcard_debug("SPISD: Write command error!\n"); break; } /* Write data */ do { if (efm_spiSd_writeBlock(ptr, token)) { break; } ptr += SD_SECTOR_SIZE; } while(--cnt); /* Stop transmission token */ if (efm_spiSd_writeBlock(EFM32_NO_POINTER, 0xfd)) { break; } return (count); } while(0); return (0); } /***************************************************************************//** * @brief * Configure memory card device * * @details * * @note * * @param[in] dev * Pointer to device descriptor * * @param[in] ctrl * Memory card control command * * @param[in] buffer * Pointer to the buffer of in/out data * * @return * Error code ******************************************************************************/ static rt_err_t rt_spiSd_control ( rt_device_t dev, rt_uint8_t ctrl, void *buffer) { rt_err_t ret; rt_uint32_t c_size; rt_uint8_t n; rt_uint8_t *buf_res; ret = -RT_ERROR; buf_res = RT_NULL; switch (ctrl) { case RT_DEVICE_CTRL_SD_SYNC: /* Flush dirty buffer if present */ efm_spiSd_cs(1); efm_spiSd_cs(0); ret = RT_EOK; break; case RT_DEVICE_CTRL_SD_GET_SCOUNT: { /* Allocate buffer */ if ((buf_res = rt_malloc(SD_BLOCK_SIZE_CSD)) == RT_NULL) { sdcard_debug("SPISD: No memory for RX buffer\n"); break; } /* Get number of sectors on the disk (32 bits) */ if (efm_spiSd_sendCmd(CMD9, 0x00000000, buf_res)) { sdcard_debug("SPISD: Get CSD failed!\n"); break; } if ((buf_res[0] >> 6) == 0x01) { /* SDv2 */ /* C_SIZE: Bit 48~69 */ c_size = ((rt_uint32_t)(buf_res[7] & 0x3f) << 16) + \ ((rt_uint32_t)buf_res[8] << 8) + buf_res[9] + 1; /* Result = Capacity / Sector Size */ *(rt_uint32_t *)buffer = (rt_uint32_t)c_size << \ (19 - SD_SECTOR_SIZE_SHIFT); } else { /* SDv1 or MMC */ /* C_SIZE: Bit 62~73 */ c_size = ((rt_uint32_t)(buf_res[6] & 0x03) << 10) + \ ((rt_uint16_t)buf_res[7] << 2) + (buf_res[8] >> 6) + 1; /* READ_BL_LEN: Bit 80~83, C_SIZE_MULT: Bit 47~49 */ n = ((buf_res[9] & 0x03) << 1) + ((buf_res[10] & 0x80) >> 7) + \ 2 + (buf_res[5] & 0x0f); /* Result = Capacity / Sector Size */ *(rt_uint32_t *)buffer = (rt_uint32_t)c_size << \ (n - SD_SECTOR_SIZE_SHIFT); } ret = RT_EOK; break; } case RT_DEVICE_CTRL_SD_GET_SSIZE: /* Get sectors on the disk (16 bits) */ *(rt_uint16_t *)buffer = SD_SECTOR_SIZE; ret = RT_EOK; break; case RT_DEVICE_CTRL_SD_GET_BSIZE: /* Get erase block size in unit of sectors (32 bits) */ if (sdType & CT_SD2) { /* Allocate buffer */ if ((buf_res = rt_malloc(SD_BLOCK_SIZE_SDSTAT)) == RT_NULL) { sdcard_debug("SPISD: No memory for RX buffer\n"); break; } /* SDv2 */ if (efm_spiSd_sendCmd(ACMD13, 0x00000000, EFM32_NO_POINTER)) { sdcard_debug("SPISD: Get SD status failed!\n"); break; } if (efm_spiSd_readBlock(buf_res, SD_BLOCK_SIZE_SDSTAT)) { sdcard_debug("SPISD: Read SD status failed!\n"); break; } /* AU_SIZE: Bit 428~431 */ *(rt_uint32_t *)buffer = 16UL << ((buf_res[10] >> 4) + 9 - \ SD_SECTOR_SIZE_SHIFT); } else { /* Allocate buffer */ if ((buf_res = rt_malloc(SD_BLOCK_SIZE_CSD)) == RT_NULL) { sdcard_debug("SPISD: No memory for RX buffer\n"); break; } /* SDv1 or MMC */ if (efm_spiSd_sendCmd(CMD9, 0x00000000, buf_res)) { sdcard_debug("SPISD: Get CSD failed!\n"); break; } if (sdType & CT_SD1) { /* SECTOR_SIZE: Bit 39~45, WRITE_BL_LEN: Bit 22~25 (9, 10 or 11) */ *(rt_uint32_t *)buffer = (((buf_res[10] & 0x3f) << 1) + \ ((rt_uint32_t)(buf_res[11] & 0x80) >> 7) + 1) << \ (8 + (buf_res[13] >> 6) - SD_SECTOR_SIZE_SHIFT); } else { /* ERASE_GRP_SIZE: Bit 42~46, ERASE_GRP_MULT: Bit 37~41 */ *(rt_uint32_t *)buffer = \ ((rt_uint16_t)((buf_res[10] & 0x7c) >> 2) + 1) * \ (((buf_res[10] & 0x03) << 3) + \ ((buf_res[11] & 0xe0) >> 5) + 1); } } ret = RT_EOK; break; case RT_DEVICE_CTRL_SD_GET_TYPE: /* Get card type flags (1 byte) */ *(rt_uint8_t *)buffer = sdType; ret = RT_EOK; break; case RT_DEVICE_CTRL_SD_GET_CSD: /* Receive CSD as a data block (16 bytes) */ if (efm_spiSd_sendCmd(CMD9, 0x00000000, buffer)) { sdcard_debug("SPISD: Get CSD failed!\n"); break; } ret = RT_EOK; break; case RT_DEVICE_CTRL_SD_GET_CID: /* Receive CID as a data block (16 bytes) */ if (efm_spiSd_sendCmd(CMD10, 0x00000000, buffer)) { sdcard_debug("SPISD: Get CID failed!\n"); break; } ret = RT_EOK; break; case RT_DEVICE_CTRL_SD_GET_OCR: /* Receive OCR as an R3 resp (4 bytes) */ if (efm_spiSd_sendCmd(CMD58, 0x00000000, buffer)) { sdcard_debug("SPISD: Get OCR failed!\n"); break; } ret = RT_EOK; break; case RT_DEVICE_CTRL_SD_GET_SDSTAT: /* Receive SD statsu as a data block (64 bytes) */ if (efm_spiSd_sendCmd(ACMD13, 0x00000000, buffer)) { sdcard_debug("SPISD: Get SD status failed!\n"); break; } if (efm_spiSd_readBlock(buffer, SD_BLOCK_SIZE_SDSTAT)) { sdcard_debug("SPISD: Read SD status failed!\n"); break; } ret = RT_EOK; break; default: break; } if (buf_res) { rt_free(buf_res); } return ret; } /***************************************************************************//** * @brief * Initialize all memory card related hardware and register the device to * kernel * * @details * * @note * * @return * Error code ******************************************************************************/ rt_err_t efm_spiSd_init(void) { struct efm32_usart_device_t *usart; do { /* Find SPI device */ spi = rt_device_find(SPISD_USING_DEVICE_NAME); if (spi == RT_NULL) { sdcard_debug("SPISD: Can't find device %s!\n", SPISD_USING_DEVICE_NAME); break; } sdcard_debug("SPISD: Find device %s\n", SPISD_USING_DEVICE_NAME); /* Config chip slect pin */ usart = (struct efm32_usart_device_t *)(spi->user_data); if (!(usart->state & USART_STATE_AUTOCS)) { GPIO_PinModeSet(SD_CS_PORT, SD_CS_PIN, gpioModePushPull, 1); sdAutoCs = false; } /* Register SPI SD device */ sd_device.type = RT_Device_Class_MTD; sd_device.init = rt_spiSd_init; sd_device.open = rt_spiSd_open; sd_device.close = rt_spiSd_close; sd_device.read = rt_spiSd_read; sd_device.write = rt_spiSd_write; sd_device.control = rt_spiSd_control; sd_device.user_data = RT_NULL; rt_device_register( &sd_device, SPISD_DEVICE_NAME, RT_DEVICE_FLAG_RDWR | RT_DEVICE_FLAG_REMOVABLE | RT_DEVICE_FLAG_STANDALONE); sdcard_debug("SPISD: HW init OK, card type %x\n", sdType); return RT_EOK; } while (0); /* Release buffer */ rt_kprintf("SPISD: HW init failed!\n"); return -RT_ERROR; } /***************************************************************************//** * @brief * De-initialize memory card device * * @details * * @note ******************************************************************************/ void efm_spiSd_deinit(void) { /* Close SPI device */ if (spi != RT_NULL) { spi->close(spi); spi = RT_NULL; sdcard_debug("SPISD: Close device %s\n", SPISD_USING_DEVICE_NAME); } /* Delete timer */ if (sdTimer != RT_NULL) { rt_timer_delete(sdTimer); sdTimer = RT_NULL; sdcard_debug("SPISD: Delete timer\n"); } sdcard_debug("SPISD: Deinit OK\n"); } /******************************************************************************* * Export to FINSH ******************************************************************************/ #ifdef RT_USING_FINSH #include void list_sd(void) { rt_uint8_t buf_res[16]; rt_uint32_t capacity, temp32; rt_uint16_t temp16; rt_kprintf(" SD Card on %s\n", SPISD_USING_DEVICE_NAME); rt_kprintf(" ------------------------------\n"); sd_device.control(&sd_device, RT_DEVICE_CTRL_SD_GET_CID, buf_res); rt_kprintf(" Manufacturer ID:\t%x\n", buf_res[0]); rt_kprintf(" OEM/Application ID:\t%x%x\n", buf_res[1], buf_res[2]); rt_kprintf(" Product revision:\t%x\n", buf_res[8]); buf_res[8] = 0; rt_kprintf(" Product name:\t\t%s\n", &buf_res[3]); rt_kprintf(" Serial number:\t\t%x%x%x%x\n", \ buf_res[9], buf_res[10], buf_res[11], buf_res[12]); rt_kprintf(" Manufacturing date:\t%d.%d\n", \ 2000 + ((buf_res[13] & 0x0F) << 4) + ((buf_res[14] & 0xF0) >> 4), \ buf_res[14] & 0x0F); rt_kprintf(" Card type:\t\t"); sd_device.control(&sd_device, RT_DEVICE_CTRL_SD_GET_TYPE, buf_res); if (buf_res[0] == CT_MMC) { rt_kprintf("%s\n", "MMC"); } else if (buf_res[0] == CT_SDC) { rt_kprintf("%s\n", "SDXC"); } else if (buf_res[0] == CT_SD1) { rt_kprintf("%s\n", "SDSC"); } else if (buf_res[0] == CT_SD2) { rt_kprintf("%s\n", "SDHC"); } sd_device.control(&sd_device, RT_DEVICE_CTRL_SD_GET_SSIZE, &temp16); sd_device.control(&sd_device, RT_DEVICE_CTRL_SD_GET_SCOUNT, &temp32); capacity = ((temp32 & 0x0000FFFF) * temp16) >> 16; capacity += ((temp32 >> 16) * temp16); capacity >>= 4; rt_kprintf(" Card capacity:\t\t%dMB\n", capacity); } FINSH_FUNCTION_EXPORT(list_sd, list the SD card.) #endif #endif /* defined(EFM32_USING_SPISD) */ /***************************************************************************//** * @} ******************************************************************************/