/* * Copyright (c) 2006-2023, RT-Thread Development Team * * SPDX-License-Identifier: Apache-2.0 * * Change Logs: * Date Author Notes * 2019-08-21 zhangjun copy from minilibc * 2020-09-07 Meco Man combine gcc armcc iccarm * 2021-02-05 Meco Man add timegm() * 2021-02-07 Meco Man fixed gettimeofday() * 2021-02-08 Meco Man add settimeofday() stime() * 2021-02-10 Meco Man add ctime_r() and re-implement ctime() * 2021-02-11 Meco Man fix bug #3183 - align days[] and months[] to 4 bytes * 2021-02-12 Meco Man add errno * 2012-12-08 Bernard fix the issue of _timevalue.tv_usec initialization, * which found by Rob * 2021-02-12 Meco Man move all of the functions located in to this file * 2021-03-15 Meco Man fixed a bug of leaking memory in asctime() * 2021-05-01 Meco Man support fixed timezone * 2021-07-21 Meco Man implement that change/set timezone APIs */ #include "sys/time.h" #include #include #include #include #ifdef RT_USING_SMART #include "lwp.h" #endif #ifdef RT_USING_POSIX_DELAY #include #endif #if defined( RT_USING_RTC ) || defined( RT_USING_CPUTIME) #include #endif #define DBG_TAG "time" #define DBG_LVL DBG_INFO #include #define _WARNING_NO_RTC "Cannot find a RTC device!" /* seconds per day */ #define SPD 24*60*60 /* days per month -- nonleap! */ static const short __spm[13] = { 0, (31), (31 + 28), (31 + 28 + 31), (31 + 28 + 31 + 30), (31 + 28 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30), (31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31), }; rt_align(4) static const char *days = "Sun Mon Tue Wed Thu Fri Sat "; rt_align(4) static const char *months = "Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec "; static int __isleap(int year) { /* every fourth year is a leap year except for century years that are * not divisible by 400. */ /* return (year % 4 == 0 && (year % 100 != 0 || year % 400 == 0)); */ return (!(year % 4) && ((year % 100) || !(year % 400))); } static void num2str(char *c, int i) { c[0] = i / 10 + '0'; c[1] = i % 10 + '0'; } /** * Get time from RTC device (without timezone, UTC+0) * @param tv: struct timeval * @return the operation status, RT_EOK on successful */ static rt_err_t get_timeval(struct timeval *tv) { #ifdef RT_USING_RTC static rt_device_t device = RT_NULL; rt_err_t rst = -RT_ERROR; if (tv == RT_NULL) return -RT_EINVAL; /* default is 0 */ tv->tv_sec = 0; tv->tv_usec = 0; /* optimization: find rtc device only first */ if (device == RT_NULL) { device = rt_device_find("rtc"); } /* read timestamp from RTC device */ if (device != RT_NULL) { if (rt_device_open(device, 0) == RT_EOK) { rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &tv->tv_sec); rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIMEVAL, tv); rt_device_close(device); } } else { LOG_W(_WARNING_NO_RTC); return -RT_ENOSYS; } return rst; #else LOG_W(_WARNING_NO_RTC); return -RT_ENOSYS; #endif /* RT_USING_RTC */ } /** * Set time to RTC device (without timezone) * @param tv: struct timeval * @return the operation status, RT_EOK on successful */ static int set_timeval(struct timeval *tv) { #ifdef RT_USING_RTC static rt_device_t device = RT_NULL; rt_err_t rst = -RT_ERROR; if (tv == RT_NULL) return -RT_EINVAL; /* optimization: find rtc device only first */ if (device == RT_NULL) { device = rt_device_find("rtc"); } /* read timestamp from RTC device */ if (device != RT_NULL) { if (rt_device_open(device, 0) == RT_EOK) { rst = rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &tv->tv_sec); rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIMEVAL, tv); rt_device_close(device); } } else { LOG_W(_WARNING_NO_RTC); return -RT_ENOSYS; } return rst; #else LOG_W(_WARNING_NO_RTC); return -RT_ENOSYS; #endif /* RT_USING_RTC */ } struct tm *gmtime_r(const time_t *timep, struct tm *r) { int i; int work = *timep % (SPD); if(timep == RT_NULL || r == RT_NULL) { rt_set_errno(EFAULT); return RT_NULL; } rt_memset(r, RT_NULL, sizeof(struct tm)); r->tm_sec = work % 60; work /= 60; r->tm_min = work % 60; r->tm_hour = work / 60; work = (int)(*timep / (SPD)); r->tm_wday = (4 + work) % 7; for (i = 1970;; ++i) { int k = __isleap(i) ? 366 : 365; if (work >= k) work -= k; else break; } r->tm_year = i - 1900; r->tm_yday = work; r->tm_mday = 1; if (__isleap(i) && (work > 58)) { if (work == 59) r->tm_mday = 2; /* 29.2. */ work -= 1; } for (i = 11; i && (__spm[i] > work); --i); r->tm_mon = i; r->tm_mday += work - __spm[i]; r->tm_isdst = tz_is_dst(); return r; } RTM_EXPORT(gmtime_r); struct tm* gmtime(const time_t* t) { static struct tm tmp; return gmtime_r(t, &tmp); } RTM_EXPORT(gmtime); struct tm* localtime_r(const time_t* t, struct tm* r) { time_t local_tz; local_tz = *t + (time_t)tz_get() * 3600; return gmtime_r(&local_tz, r); } RTM_EXPORT(localtime_r); struct tm* localtime(const time_t* t) { static struct tm tmp; return localtime_r(t, &tmp); } RTM_EXPORT(localtime); time_t mktime(struct tm * const t) { time_t timestamp; timestamp = timegm(t); timestamp = timestamp - 3600 * (time_t)tz_get(); return timestamp; } RTM_EXPORT(mktime); char* asctime_r(const struct tm *t, char *buf) { if(t == RT_NULL || buf == RT_NULL) { rt_set_errno(EFAULT); return RT_NULL; } rt_memset(buf, RT_NULL, 26); /* Checking input validity */ if ((int)rt_strlen(days) <= (t->tm_wday << 2) || (int)rt_strlen(months) <= (t->tm_mon << 2)) { LOG_W("asctime_r: the input parameters exceeded the limit, please check it."); *(int*) buf = *(int*) days; *(int*) (buf + 4) = *(int*) months; num2str(buf + 8, t->tm_mday); if (buf[8] == '0') buf[8] = ' '; buf[10] = ' '; num2str(buf + 11, t->tm_hour); buf[13] = ':'; num2str(buf + 14, t->tm_min); buf[16] = ':'; num2str(buf + 17, t->tm_sec); buf[19] = ' '; num2str(buf + 20, 2000 / 100); num2str(buf + 22, 2000 % 100); buf[24] = '\n'; buf[25] = '\0'; return buf; } /* "Wed Jun 30 21:49:08 1993\n" */ *(int*) buf = *(int*) (days + (t->tm_wday << 2)); *(int*) (buf + 4) = *(int*) (months + (t->tm_mon << 2)); num2str(buf + 8, t->tm_mday); if (buf[8] == '0') buf[8] = ' '; buf[10] = ' '; num2str(buf + 11, t->tm_hour); buf[13] = ':'; num2str(buf + 14, t->tm_min); buf[16] = ':'; num2str(buf + 17, t->tm_sec); buf[19] = ' '; num2str(buf + 20, (t->tm_year + 1900) / 100); num2str(buf + 22, (t->tm_year + 1900) % 100); buf[24] = '\n'; buf[25] = '\0'; return buf; } RTM_EXPORT(asctime_r); char* asctime(const struct tm *timeptr) { static char buf[26]; return asctime_r(timeptr, buf); } RTM_EXPORT(asctime); char *ctime_r(const time_t * tim_p, char * result) { struct tm tm; return asctime_r(localtime_r(tim_p, &tm), result); } RTM_EXPORT(ctime_r); char* ctime(const time_t *tim_p) { return asctime(localtime(tim_p)); } RTM_EXPORT(ctime); #ifndef __ICCARM__ double difftime(time_t time1, time_t time2) { return (double)(time1 - time2); } #endif /* __ICCARM__ */ RTM_EXPORT(difftime); RTM_EXPORT(strftime); /* inherent in the toolchain */ /** * Returns the current time. * * @param time_t * t the timestamp pointer, if not used, keep NULL. * * @return The value ((time_t)-1) is returned if the calendar time is not available. * If timer is not a NULL pointer, the return value is also stored in timer. * */ rt_weak time_t time(time_t *t) { struct timeval now; if(get_timeval(&now) == RT_EOK) { if (t) { *t = now.tv_sec; } return now.tv_sec; } else { rt_set_errno(EFAULT); return ((time_t)-1); } } RTM_EXPORT(time); rt_weak clock_t clock(void) { return rt_tick_get(); } RTM_EXPORT(clock); int stime(const time_t *t) { struct timeval tv; if (t == RT_NULL) { rt_set_errno(EFAULT); return -1; } tv.tv_sec = *t; tv.tv_usec = 0; if (set_timeval(&tv) == RT_EOK) { return 0; } else { rt_set_errno(EFAULT); return -1; } } RTM_EXPORT(stime); time_t timegm(struct tm * const t) { time_t day; time_t i; time_t years; if(t == RT_NULL) { rt_set_errno(EFAULT); return (time_t)-1; } years = (time_t)t->tm_year - 70; if (t->tm_sec > 60) /* seconds after the minute - [0, 60] including leap second */ { t->tm_min += t->tm_sec / 60; t->tm_sec %= 60; } if (t->tm_min >= 60) /* minutes after the hour - [0, 59] */ { t->tm_hour += t->tm_min / 60; t->tm_min %= 60; } if (t->tm_hour >= 24) /* hours since midnight - [0, 23] */ { t->tm_mday += t->tm_hour / 24; t->tm_hour %= 24; } if (t->tm_mon >= 12) /* months since January - [0, 11] */ { t->tm_year += t->tm_mon / 12; t->tm_mon %= 12; } while (t->tm_mday > __spm[1 + t->tm_mon]) { if (t->tm_mon == 1 && __isleap(t->tm_year + 1900)) { --t->tm_mday; } t->tm_mday -= __spm[t->tm_mon]; ++t->tm_mon; if (t->tm_mon > 11) { t->tm_mon = 0; ++t->tm_year; } } if (t->tm_year < 70) { rt_set_errno(EINVAL); return (time_t) -1; } /* Days since 1970 is 365 * number of years + number of leap years since 1970 */ day = years * 365 + (years + 1) / 4; /* After 2100 we have to substract 3 leap years for every 400 years This is not intuitive. Most mktime implementations do not support dates after 2059, anyway, so we might leave this out for it's bloat. */ if (years >= 131) { years -= 131; years /= 100; day -= (years >> 2) * 3 + 1; if ((years &= 3) == 3) years--; day -= years; } day += t->tm_yday = __spm[t->tm_mon] + t->tm_mday - 1 + (__isleap(t->tm_year + 1900) & (t->tm_mon > 1)); /* day is now the number of days since 'Jan 1 1970' */ i = 7; t->tm_wday = (int)((day + 4) % i); /* Sunday=0, Monday=1, ..., Saturday=6 */ i = 24; day *= i; i = 60; return ((day + t->tm_hour) * i + t->tm_min) * i + t->tm_sec; } RTM_EXPORT(timegm); int gettimeofday(struct timeval *tv, struct timezone *tz) { /* The use of the timezone structure is obsolete; * the tz argument should normally be specified as NULL. * The tz_dsttime field has never been used under Linux. * Thus, the following is purely of historic interest. */ if(tz != RT_NULL) { tz->tz_dsttime = DST_NONE; tz->tz_minuteswest = -(tz_get() * 60); } if (tv != RT_NULL && get_timeval(tv) == RT_EOK) { return 0; } else { rt_set_errno(EINVAL); return -1; } } RTM_EXPORT(gettimeofday); int settimeofday(const struct timeval *tv, const struct timezone *tz) { /* The use of the timezone structure is obsolete; * the tz argument should normally be specified as NULL. * The tz_dsttime field has never been used under Linux. * Thus, the following is purely of historic interest. */ if (tv != RT_NULL && tv->tv_usec >= 0 && set_timeval((struct timeval *)tv) == RT_EOK) { return 0; } else { rt_set_errno(EINVAL); return -1; } } RTM_EXPORT(settimeofday); #ifdef RT_USING_POSIX_DELAY int nanosleep(const struct timespec *rqtp, struct timespec *rmtp) { if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= NANOSECOND_PER_SECOND) { rt_set_errno(EINVAL); return -1; } #ifdef RT_USING_CPUTIME rt_uint64_t unit = clock_cpu_getres(); rt_uint64_t ns = rqtp->tv_sec * NANOSECOND_PER_SECOND + rqtp->tv_nsec; rt_uint64_t tick = (ns * (1000UL * 1000)) / unit; rt_cputime_sleep(tick); if (rt_get_errno() == -RT_EINTR) { if (rmtp) { uint64_t rmtp_cpu_tick = tick - clock_cpu_gettime(); rmtp->tv_sec = ((time_t)((rmtp_cpu_tick * unit) / (1000UL * 1000))) / NANOSECOND_PER_SECOND; rmtp->tv_nsec = ((long)((rmtp_cpu_tick * unit) / (1000UL * 1000))) % NANOSECOND_PER_SECOND; } rt_set_errno(EINTR); return -1; } #else rt_tick_t tick, tick_old = rt_tick_get(); tick = rqtp->tv_sec * RT_TICK_PER_SECOND + ((uint64_t)rqtp->tv_nsec * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND; rt_thread_delay(tick); if (rt_get_errno() == -RT_EINTR) { if (rmtp) { tick = tick_old + tick - rt_tick_get(); /* get the passed time */ rmtp->tv_sec = tick / RT_TICK_PER_SECOND; rmtp->tv_nsec = (tick % RT_TICK_PER_SECOND) * (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND); } rt_set_errno(EINTR); return -1; } #endif return 0; } RTM_EXPORT(nanosleep); #endif /* RT_USING_POSIX_DELAY */ #ifdef RT_USING_POSIX_CLOCK #ifdef RT_USING_RTC static volatile struct timeval _timevalue; static int _rt_clock_time_system_init(void) { rt_base_t level; time_t time = 0; rt_tick_t tick; rt_device_t device; device = rt_device_find("rtc"); if (device != RT_NULL) { /* get realtime seconds */ if(rt_device_control(device, RT_DEVICE_CTRL_RTC_GET_TIME, &time) == RT_EOK) { level = rt_hw_interrupt_disable(); tick = rt_tick_get(); /* get tick */ _timevalue.tv_usec = (tick%RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK; _timevalue.tv_sec = time - tick/RT_TICK_PER_SECOND - 1; rt_hw_interrupt_enable(level); return 0; } } level = rt_hw_interrupt_disable(); _timevalue.tv_usec = 0; _timevalue.tv_sec = 0; rt_hw_interrupt_enable(level); return -1; } INIT_COMPONENT_EXPORT(_rt_clock_time_system_init); #endif /* RT_USING_RTC */ int clock_getres(clockid_t clockid, struct timespec *res) { #ifndef RT_USING_RTC LOG_W(_WARNING_NO_RTC); return -1; #else int ret = 0; if (res == RT_NULL) { rt_set_errno(EFAULT); return -1; } switch (clockid) { case CLOCK_REALTIME: res->tv_sec = 0; res->tv_nsec = NANOSECOND_PER_SECOND/RT_TICK_PER_SECOND; break; #ifdef RT_USING_CPUTIME case CLOCK_CPUTIME_ID: res->tv_sec = 0; res->tv_nsec = (clock_cpu_getres() / (1000UL * 1000)); break; #endif default: res->tv_sec = 0; res->tv_nsec = 0; ret = -1; rt_set_errno(EINVAL); break; } return ret; #endif /* RT_USING_RTC */ } RTM_EXPORT(clock_getres); int clock_gettime(clockid_t clockid, struct timespec *tp) { #ifndef RT_USING_RTC LOG_W(_WARNING_NO_RTC); return -1; #else int ret = 0; if (tp == RT_NULL) { rt_set_errno(EFAULT); return -1; } switch (clockid) { case CLOCK_REALTIME: { rt_tick_t tick; rt_base_t level; level = rt_hw_interrupt_disable(); tick = rt_tick_get(); /* get tick */ tp->tv_sec = _timevalue.tv_sec + tick / RT_TICK_PER_SECOND; tp->tv_nsec = (_timevalue.tv_usec + (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK) * 1000; rt_hw_interrupt_enable(level); } break; #ifdef RT_USING_CPUTIME case CLOCK_MONOTONIC: case CLOCK_CPUTIME_ID: { uint64_t unit = 0; uint64_t cpu_tick; unit = clock_cpu_getres(); cpu_tick = clock_cpu_gettime(); tp->tv_sec = ((uint64_t)((cpu_tick * unit) / (1000UL * 1000))) / NANOSECOND_PER_SECOND; tp->tv_nsec = ((uint64_t)((cpu_tick * unit) / (1000UL * 1000))) % NANOSECOND_PER_SECOND; } break; #endif default: tp->tv_sec = 0; tp->tv_nsec = 0; rt_set_errno(EINVAL); ret = -1; } return ret; #endif /* RT_USING_RTC */ } RTM_EXPORT(clock_gettime); int clock_nanosleep(clockid_t clockid, int flags, const struct timespec *rqtp, struct timespec *rmtp) { #ifndef RT_USING_RTC LOG_W(_WARNING_NO_RTC); return -1; #else if (rqtp->tv_sec < 0 || rqtp->tv_nsec < 0 || rqtp->tv_nsec >= NANOSECOND_PER_SECOND) { rt_set_errno(EINVAL); return -1; } switch (clockid) { case CLOCK_REALTIME: { rt_tick_t tick, tick_old = rt_tick_get(); if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME) { rt_int64_t ts = ((rqtp->tv_sec - _timevalue.tv_sec) * RT_TICK_PER_SECOND); rt_int64_t tns = (rqtp->tv_nsec - _timevalue.tv_usec * 1000) * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND); tick = ts + tns; rt_tick_t rt_tick = rt_tick_get(); tick = tick < rt_tick ? 0 : tick - rt_tick; } else { tick = rqtp->tv_sec * RT_TICK_PER_SECOND + ((uint64_t)(rqtp->tv_nsec) * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND; } rt_thread_delay(tick); if (rt_get_errno() == -RT_EINTR) { if (rmtp) { tick = tick_old + tick - rt_tick_get(); /* get the passed time */ rmtp->tv_sec = tick / RT_TICK_PER_SECOND; rmtp->tv_nsec = (tick % RT_TICK_PER_SECOND) * (NANOSECOND_PER_SECOND / RT_TICK_PER_SECOND); } rt_set_errno(EINTR); return -1; } } break; #ifdef RT_USING_CPUTIME case CLOCK_MONOTONIC: case CLOCK_CPUTIME_ID: { rt_uint64_t cpu_tick_old = clock_cpu_gettime(); uint64_t unit = clock_cpu_getres(); rt_uint64_t ns = rqtp->tv_sec * NANOSECOND_PER_SECOND + rqtp->tv_nsec; rt_uint64_t tick = (ns * (1000UL * 1000)) / unit; if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME) tick -= cpu_tick_old; rt_cputime_sleep(tick); if (rt_get_errno() == -RT_EINTR) { if (rmtp) { uint64_t rmtp_cpu_tick = tick - clock_cpu_gettime(); rmtp->tv_sec = ((time_t)((rmtp_cpu_tick * unit) / (1000UL * 1000))) / NANOSECOND_PER_SECOND; rmtp->tv_nsec = ((long)((rmtp_cpu_tick * unit) / (1000UL * 1000))) % NANOSECOND_PER_SECOND; } rt_set_errno(EINTR); return -1; } } break; #endif default: rt_set_errno(EINVAL); return -1; } return 0; #endif } RTM_EXPORT(clock_nanosleep); int clock_settime(clockid_t clockid, const struct timespec *tp) { #ifndef RT_USING_RTC LOG_W(_WARNING_NO_RTC); return -1; #else rt_base_t level; int second; rt_tick_t tick; rt_device_t device; if ((clockid != CLOCK_REALTIME) || (tp == RT_NULL)) { rt_set_errno(EFAULT); return -1; } /* get second */ second = tp->tv_sec; level = rt_hw_interrupt_disable(); tick = rt_tick_get(); /* get tick */ /* update timevalue */ _timevalue.tv_usec = MICROSECOND_PER_SECOND - (tick % RT_TICK_PER_SECOND) * MICROSECOND_PER_TICK; _timevalue.tv_sec = second - tick / RT_TICK_PER_SECOND - 1; rt_hw_interrupt_enable(level); /* update for RTC device */ device = rt_device_find("rtc"); if (device != RT_NULL) { /* set realtime seconds */ if(rt_device_control(device, RT_DEVICE_CTRL_RTC_SET_TIME, &second) == RT_EOK) { return 0; } } return -1; #endif /* RT_USING_RTC */ } RTM_EXPORT(clock_settime); int rt_timespec_to_tick(const struct timespec *time) { int tick; int nsecond, second; struct timespec tp = {0}; RT_ASSERT(time != RT_NULL); tick = RT_WAITING_FOREVER; if (time != NULL) { /* get current tp */ clock_gettime(CLOCK_REALTIME, &tp); if ((time->tv_nsec - tp.tv_nsec) < 0) { nsecond = NANOSECOND_PER_SECOND - (tp.tv_nsec - time->tv_nsec); second = time->tv_sec - tp.tv_sec - 1; } else { nsecond = time->tv_nsec - tp.tv_nsec; second = time->tv_sec - tp.tv_sec; } tick = second * RT_TICK_PER_SECOND + nsecond * RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND; if (tick < 0) tick = 0; } return tick; } RTM_EXPORT(rt_timespec_to_tick); #endif /* RT_USING_POSIX_CLOCK */ #ifdef RT_USING_POSIX_TIMER #define ACTIVE 1 #define NOT_ACTIVE 0 struct timer_obj { union { struct rt_timer timer; #ifdef RT_USING_CPUTIME struct rt_cputimer cputimer; #endif }; void (*sigev_notify_function)(union sigval val); union sigval val; struct timespec interval; /* Reload value */ struct timespec value; /* Reload value */ rt_uint64_t reload; /* Reload value in ms */ rt_uint32_t status; int sigev_signo; clockid_t clockid; #ifdef RT_USING_SMART pid_t pid; #endif }; static void rtthread_timer_wrapper(void *timerobj) { struct timer_obj *timer; timer = (struct timer_obj *)timerobj; if (timer->reload == 0U) { timer->status = NOT_ACTIVE; } #ifdef RT_USING_CPUTIME if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout()) { timer->reload = ((timer->interval.tv_sec * NANOSECOND_PER_SECOND + timer->interval.tv_nsec) * (1000UL * 1000)) / clock_cpu_getres(); if (timer->reload) rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_TIME, &(timer->reload)); } else #endif /* RT_USING_CPUTIME */ { timer->reload = (timer->interval.tv_sec * RT_TICK_PER_SECOND) + (timer->interval.tv_nsec * RT_TICK_PER_SECOND) / NANOSECOND_PER_SECOND; if (timer->reload) rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, &(timer->reload)); } #ifdef RT_USING_SMART sys_kill(timer->pid, timer->sigev_signo); #else if(timer->sigev_notify_function != RT_NULL) { (timer->sigev_notify_function)(timer->val); } #endif } #define TIMER_ID_MAX 50 static struct timer_obj *_g_timerid[TIMER_ID_MAX]; static int timerid_idx = 0; RT_DEFINE_SPINLOCK(_timer_id_lock); void timer_id_init(void) { for (int i = 0; i < TIMER_ID_MAX; i++) { _g_timerid[i] = NULL; } timerid_idx = 0; } int timer_id_alloc(void) { for (int i = 0; i < timerid_idx; i++) { if (_g_timerid[i] == NULL) return i; } if (timerid_idx < TIMER_ID_MAX) { timerid_idx++; return timerid_idx; /* todo */ } return -1; } void timer_id_lock() { rt_hw_spin_lock(&_timer_id_lock); } void timer_id_unlock() { rt_hw_spin_unlock(&_timer_id_lock); } struct timer_obj *timer_id_get(rt_ubase_t timerid) { struct timer_obj *timer; if (timerid < 0 || timerid >= TIMER_ID_MAX) { return NULL; } timer_id_lock(); if (_g_timerid[timerid] == NULL) { timer_id_unlock(); LOG_E("can not find timer!"); return NULL; } timer = _g_timerid[timerid]; timer_id_unlock(); return timer; } int timer_id_put(int id) { if (_g_timerid[id] == NULL) return -1; _g_timerid[id] = NULL; return 0; } /** * @brief Create a per-process timer. * * This API does not accept SIGEV_THREAD as valid signal event notification * type. * * See IEEE 1003.1 */ int timer_create(clockid_t clockid, struct sigevent *evp, timer_t *timerid) { static int num = 0; int _timerid = 0; struct timer_obj *timer; char timername[RT_NAME_MAX] = {0}; if (clockid > CLOCK_ID_MAX || (evp->sigev_notify != SIGEV_NONE && evp->sigev_notify != SIGEV_SIGNAL)) { rt_set_errno(EINVAL); return -1; } timer = rt_malloc(sizeof(struct timer_obj)); if(timer == RT_NULL) { rt_set_errno(ENOMEM); return -1; } rt_snprintf(timername, RT_NAME_MAX, "psx_tm%02d", num++); num %= 100; timer->sigev_signo = evp->sigev_signo; #ifdef RT_USING_SMART timer->pid = lwp_self()->pid; #endif timer->sigev_notify_function = evp->sigev_notify_function; timer->val = evp->sigev_value; timer->interval.tv_sec = 0; timer->interval.tv_nsec = 0; timer->reload = 0U; timer->status = NOT_ACTIVE; timer->clockid = clockid; #ifdef RT_USING_CPUTIME if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout()) { rt_cputimer_init(&timer->cputimer, timername, rtthread_timer_wrapper, timer, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER); } else #endif /* RT_USING_CPUTIME */ { if (evp->sigev_notify == SIGEV_NONE) rt_timer_init(&timer->timer, timername, RT_NULL, RT_NULL, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER); else rt_timer_init(&timer->timer, timername, rtthread_timer_wrapper, timer, 0, RT_TIMER_FLAG_ONE_SHOT | RT_TIMER_FLAG_SOFT_TIMER); } timer_id_lock(); _timerid = timer_id_alloc(); if (_timerid < 0) { timer_id_unlock(); LOG_E("_timerid overflow!"); return -1; /* todo:memory leak */ } _g_timerid[_timerid] = timer; *timerid = (timer_t)(rt_ubase_t)_timerid; timer_id_unlock(); return 0; } RTM_EXPORT(timer_create); /** * @brief Delete a per-process timer. * * See IEEE 1003.1 */ int timer_delete(timer_t timerid) { struct timer_obj *timer; rt_ubase_t ktimerid; ktimerid = (rt_ubase_t)timerid; if (ktimerid < 0 || ktimerid >= TIMER_ID_MAX) { rt_set_errno(EINVAL); return -1; } timer_id_lock(); if (_g_timerid[ktimerid] == NULL) { timer_id_unlock(); rt_set_errno(EINVAL); LOG_E("can not find timer!"); return -1; } timer = _g_timerid[ktimerid]; timer_id_put(ktimerid); timer_id_unlock(); if (timer == RT_NULL) { rt_set_errno(EINVAL); return -1; } #ifdef RT_USING_CPUTIME if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout()) { if (timer->status == ACTIVE) { timer->status = NOT_ACTIVE; rt_cputimer_stop(&timer->cputimer); } rt_cputimer_detach(&timer->cputimer); } else #endif /* RT_USING_CPUTIME */ { if (timer->status == ACTIVE) { timer->status = NOT_ACTIVE; rt_timer_stop(&timer->timer); } rt_timer_detach(&timer->timer); } rt_free(timer); return 0; } RTM_EXPORT(timer_delete); /** * * Return the overrun count for the last timer expiration. * It is subefficient to create a new structure to get overrun count. **/ int timer_getoverrun(timer_t timerid) { rt_set_errno(ENOSYS); return -1; } /** * @brief Get amount of time left for expiration on a per-process timer. * * See IEEE 1003.1 */ int timer_gettime(timer_t timerid, struct itimerspec *its) { struct timer_obj *timer; rt_uint32_t seconds, nanoseconds; timer = timer_id_get((rt_ubase_t)timerid); if (timer == NULL) { rt_set_errno(EINVAL); return -1; } if (its == NULL) { rt_set_errno(EFAULT); return -1; } if (timer->status == ACTIVE) { #ifdef RT_USING_CPUTIME if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout()) { rt_uint64_t remain_tick; rt_uint64_t remaining; rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_tick); remaining = ((remain_tick - clock_cpu_gettime()) * (1000UL * 1000)) / clock_cpu_getres(); seconds = remaining / NANOSECOND_PER_SECOND; nanoseconds = remaining % NANOSECOND_PER_SECOND; } else #endif /* RT_USING_CPUTIME */ { rt_tick_t remain_tick; rt_tick_t remaining; rt_timer_control(&timer->timer, RT_TIMER_CTRL_GET_REMAIN_TIME, &remain_tick); /* 'remain_tick' is minimum-unit in the RT-Thread' timer, * so the seconds, nanoseconds will be calculated by 'remain_tick'. */ remaining = remain_tick - rt_tick_get(); /* calculate 'second' */ seconds = remaining / RT_TICK_PER_SECOND; /* calculate 'nanosecond'; To avoid lost of accuracy, because "RT_TICK_PER_SECOND" maybe 100, 1000, 1024 and so on. * * remain_tick millisecond remain_tick * MILLISECOND_PER_SECOND * ------------------------- = -------------------------- ---> millisecond = ------------------------------------------- * RT_TICK_PER_SECOND MILLISECOND_PER_SECOND RT_TICK_PER_SECOND * * remain_tick * MILLISECOND_PER_SECOND remain_tick * MILLISECOND_PER_SECOND * MICROSECOND_PER_SECOND * millisecond = ---------------------------------------- ---> nanosecond = ------------------------------------------------------------------- * RT_TICK_PER_SECOND RT_TICK_PER_SECOND * */ nanoseconds = (((remaining % RT_TICK_PER_SECOND) * MILLISECOND_PER_SECOND) * MICROSECOND_PER_SECOND) / RT_TICK_PER_SECOND; } its->it_value.tv_sec = (rt_int32_t)seconds; its->it_value.tv_nsec = (rt_int32_t)nanoseconds; } else { /* Timer is disarmed */ its->it_value.tv_sec = 0; its->it_value.tv_nsec = 0; } /* The interval last set by timer_settime() */ its->it_interval = timer->interval; return 0; } RTM_EXPORT(timer_gettime); /** * @brief Sets expiration time of per-process timer. * * See IEEE 1003.1 */ int timer_settime(timer_t timerid, int flags, const struct itimerspec *value, struct itimerspec *ovalue) { struct timer_obj *timer = timer_id_get((rt_ubase_t)timerid); if (timer == NULL || value->it_interval.tv_nsec < 0 || value->it_interval.tv_nsec >= NANOSECOND_PER_SECOND || value->it_interval.tv_sec < 0 || value->it_value.tv_nsec < 0 || value->it_value.tv_nsec >= NANOSECOND_PER_SECOND || value->it_value.tv_sec < 0) { rt_set_errno(EINVAL); return -1; } /* Save time to expire and old reload value. */ if (ovalue != NULL) { timer_gettime(timerid, ovalue); } /* Stop the timer if the value is 0 */ if ((value->it_value.tv_sec == 0) && (value->it_value.tv_nsec == 0)) { if (timer->status == ACTIVE) { #ifdef RT_USING_CPUTIME if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout()) rt_cputimer_stop(&timer->cputimer); else #endif /* RT_USING_CPUTIME */ rt_timer_stop(&timer->timer); } timer->status = NOT_ACTIVE; return 0; } /* calculate timer period(tick); To avoid lost of accuracy, because "RT_TICK_PER_SECOND" maybe 100, 1000, 1024 and so on. * * tick nanosecond nanosecond * RT_TICK_PER_SECOND * ------------------------- = -------------------------- ---> tick = ------------------------------------- * RT_TICK_PER_SECOND NANOSECOND_PER_SECOND NANOSECOND_PER_SECOND * */ #ifdef RT_USING_CPUTIME if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout()) { rt_uint64_t tick; uint64_t unit = clock_cpu_getres(); tick = ((value->it_value.tv_sec * NANOSECOND_PER_SECOND + value->it_value.tv_nsec) * (1000UL * 1000)) / unit; if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME) { tick -= clock_cpu_gettime(); } timer->reload = tick; } else #endif /* RT_USING_CPUTIME */ { if ((flags & TIMER_ABSTIME) == TIMER_ABSTIME) { #ifndef RT_USING_RTC LOG_W(_WARNING_NO_RTC); return -1; #else rt_int64_t ts = ((value->it_value.tv_sec - _timevalue.tv_sec) * RT_TICK_PER_SECOND); rt_int64_t tns = (value->it_value.tv_nsec - _timevalue.tv_usec * 1000) * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND); rt_int64_t reload = ts + tns; rt_tick_t rt_tick = rt_tick_get(); timer->reload = reload < rt_tick ? 0 : reload - rt_tick; #endif } else timer->reload = (value->it_value.tv_sec * RT_TICK_PER_SECOND) + value->it_value.tv_nsec * (RT_TICK_PER_SECOND / NANOSECOND_PER_SECOND); } timer->interval.tv_sec = value->it_interval.tv_sec; timer->interval.tv_nsec = value->it_interval.tv_nsec; timer->value.tv_sec = value->it_value.tv_sec; timer->value.tv_nsec = value->it_value.tv_nsec; if (timer->status == ACTIVE) { #ifdef RT_USING_CPUTIME if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout()) rt_cputimer_stop(&timer->cputimer); else #endif /* RT_USING_CPUTIME */ rt_timer_stop(&timer->timer); } timer->status = ACTIVE; #ifdef RT_USING_CPUTIME if (timer->clockid == CLOCK_CPUTIME_ID && clock_cpu_issettimeout()) { if ((value->it_interval.tv_sec == 0) && (value->it_interval.tv_nsec == 0)) rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_ONESHOT, RT_NULL); else rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL); rt_cputimer_control(&timer->cputimer, RT_TIMER_CTRL_SET_TIME, &(timer->reload)); rt_cputimer_start(&timer->cputimer); } else #endif /* RT_USING_CPUTIME */ { if ((value->it_interval.tv_sec == 0) && (value->it_interval.tv_nsec == 0)) rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_ONESHOT, RT_NULL); else rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_PERIODIC, RT_NULL); rt_timer_control(&timer->timer, RT_TIMER_CTRL_SET_TIME, &(timer->reload)); rt_timer_start(&timer->timer); } return 0; } RTM_EXPORT(timer_settime); #endif /* RT_USING_POSIX_TIMER */ /* timezone */ #ifndef RT_LIBC_DEFAULT_TIMEZONE #define RT_LIBC_DEFAULT_TIMEZONE 8 #endif static volatile int8_t _current_timezone = RT_LIBC_DEFAULT_TIMEZONE; void tz_set(int8_t tz) { rt_base_t level; level = rt_hw_interrupt_disable(); _current_timezone = tz; rt_hw_interrupt_enable(level); } int8_t tz_get(void) { return _current_timezone; } int8_t tz_is_dst(void) { return 0; }